БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

вление, на преодоление к-рого тратится энергия. Вследствие этого давление крови по ходу капилляра падает. Это приводит к поступлению жидкости из межклеточных пространств в полость капилляра (см. Капиллярное кровообращение). Часть жидкости оттекает из межклеточных щелей по лимфа-тич. сосудам (рис. 1).




Характеристика сосудистого русла и движения крови в различных участках сердечно-сосудистой системы





Аорта

Артериолы

Капилляры

Вену-лы

Вены полые (верхняя и нижняя)
Диаметр сосуда

2,5 см

30 мкм

8 мкм

20 мкм

по 3 см
Суммарный просвет, см2

4,5

400

4500

700

10
Линейная скорость кровотока

120-0 (ср. 40 ) см/ сек

4 мм/сек

0,5 мм/сек

-

20 см/сек
Давление крови, мм рт. ст.

120/70

70-30

30-15



15-0
Объём крови в данном участке сосудистого русла (% ог общего объёма крови)* .....

10**

5

5



Все вены большого кру-га 50
* Объём кр. в полостях сердца ** Вкл. арт.большого круга

- 15%

объём кро

ви в сосуда

х малог

о круга- 18%.

Непосредств измерение давления жидкости в межклеточных пространствах тканей путём введения микроканюль, соединённых с чувствительными электроманометрами, показало, что это давление не равно атмосферному, а ниже его на 5-10 мм рт. ст. Этот, казалось бы, парадоксальный факт объясняется тем, что в тканях происходит активное откачивание жидкости. Периодич. сдавливание тканей пульсирующими артериями и артериолами и сокращающимися мышцами приводит к проталкиванию тканевой жидкости в лимфатич. сосуды, клапаны к-рых препятствуют обратному поступлению её в ткани. Тем самым образуется помпа, поддерживающая отрицательное (по отношению к атмосферному) давление в межклеточных щелях. Помпы, откачивающие жидкость из межклеточных пространств, создают постоянный вакуум, способствуя непрерывному поступлению жидкости в ткани даже при значит. колебаниях капиллярного давления. Этим обеспечивается большая надёжность осн. функции К. - обмена веществ между кровью и тканями. Эти же помпы одновременно гарантируют достаточный отток жидкости по лимфатич. системе в случаях резкого падения онкотич. давления плазмы крови (и возникающего вследствие этого уменьшения обратного всасывания тканевой жидкости в кровь). Указанные помпы, т. о., представляют собой подлинное "периферич. сердце", функция которого зависит от степени эластичности артерий и от периодич. деятельности мышц.

Из тканей кровь оттекает по венулам и венам. Вены большого круга К. содержат более половины всей крови организма. Сокращения скелетных мышц и ды-хат. движения облегчают приток крови в правое предсердие. Мышцы сдавливают расположенные между ними вены, выжимая кровь по направлению к сердцу (обратный ток крови при этом невозможен из-за наличия в венах клапанов; рис. 2). Увеличение отрицат. давления в грудной клетке во время каждого вдоха способствует присасыванию крови к сердцу. К. отдельных органов - сердца, лёгких, мозга, печени, почек, селезёнки - отличается рядом особенностей, обусловленных специфич. функциями этих органов.

Существенными особенностями обладает и коронарное кровообращение.



Регуляция кровообращения. Интенсивность деятельности различных органов и тканей непрерывно меняется, в связи с чем меняется и их потребность в различных веществах. При неизменном уровне кровотока доставка кислорода и глюкозы тканям может увеличиться втрое за счёт более полной утилизации этих веществ из протекающей крови. При этих же условиях доставка жирных к-т может возрасти в 28 раз, аминокислот в 36 раз. углекислого газа в 25 раз, продуктов белкового обмена в 480 раз и т. д. Следовательно, наиболее "узкое" место системы К. - транспорт кислорода и глюкозы. Поэтому, если величина кровотока достаточна для обеспечения тканей кислородом и глюкозой, она оказывается более чем достаточной для транспорта всех др. веществ. В тканях, как правило, имеются значительные запасы глюкозы, депонированные в виде гликогена; запасы же кислорода практически отсутствуют (исключение составляют лишь весьма небольшие кол-ва кислорода, связанного с мио-глобином мышц). Поэтому основной фактор, определяющий интенсивность кровотока в тканях,- потребность их в кислороде. Работа механизмов, регулирующих К., направлена в первую очередь на то, чтобы удовлетворить именно эту потребность .

В сложной системе регуляции К. пока исследованы лишь общие принципы и детально изучены только нек-рые звенья. Значит. прогресс в этой области достигнут, в частности, благодаря исследованию регуляции осн. функции сердечно-сосудистой системы - К. - методами ма-тематич. и электрич. моделирования. К. регулируется рефлекторными и гуморальными механизмами, обеспечивающими органы и ткани в каждый данный момент нужным им количеством кислорода, а также одновременное поддержание на необходимом уровне осн. параметров гемодинамики - кровяного давления, МО, периферич, сопротивления и т. д. Процессы регуляции К. осуществляются изменением тонуса артериол и величины МО. Тонус артериол регулируется сосудодвигательным центром, расположенным в продолговатом мозге. Этот центр посылает импульсы гладким мышцам сосудистой стенки через центры вегетативной нервной системы. Необходимое давление крови в артериальной системе поддерживается лишь при условии постоянного тонич. сокращения мышц артериол, для чего необходимо непрерывное поступление к этим мышцам нервных импульсов по сосудосуживающим волокнам симпатич. нервной системы. Эти импульсы следуют с частотой 1-2 импульса в 1 сек. Повышение частоты приводит к увеличению тонуса артериол и возрастанию артериального давления, урежение импульсов вызывает противоположный эффект. Деятельность сосудо-двигат. центра регулируется сигналами, поступающими от баро- или механоре-цепторов сосудистых рефлексогенных зон (важнейшая из них - каротидный синус). Повышение давления в этих зонах вызывает увеличение частоты импульсов, возникающих в барорецепторах, что приводит к снижению тонуса сосудо-двигат. центра, а следовательно, и к уре-жению ответных импульсов, поступающих из него к гладким мышцам артериол. Это приводит к снижению тонуса мышечной стенки артериол, урежению сердцебиений (снижению МО) и, как следствие,- к падению артериального давления. Падение давления в указанных зонах вызывает противоположную реакцию (рис. 3). Т. о., вся система представляет собой сервомеханизм, работающий по принципу обратной связи и поддерживающий величину артериального давления на относительно постоянном уровне (см. Депрессорные рефлексы, Каро-тидные рефлексы). Аналогичные реакции возникают и при раздражении баро-рецепторов сосудистого русла малого круга кровообращения. Тонус сосудо-двигательного центра зависит и от импульсов, возникающих в хеморецеп-торах сосудистого русла и тканей, а также под влиянием биологически активных веществ крови. Кроме того, состояние со-судодвигательного центра определяется

Е сигналами, приходящими от др. отделов центр. нервной системы. Благодаря этому адекватные изменения К. наступают при изменениях функционального состояния любого органа, системы или всего организма.

Помимо тонуса артериол, под контролем нервной системы находится также величина МО, зависящая от кол-ва крови, притекающей к сердцу по венам, и от энергии сердечных сокращений. Количество крови, притекающей к сердцу, зависит от тонуса гладких мышц венозной стенки, определяющего ёмкость венозной системы, от сократит. деятельности скелетных мышц, облегчающей возврат крови к сердцу, а также от общего объёма крови и тканевой жидкости в организме. Тонус вен и сократит. деятельность скелетных мышц обусловливаются импульсами, поступающими к этим органам соответственно из сосудодвигатель-ного центра и центров, управляющих движением тела. Общий объём крови и тканевой жидкости регулируется посредством рефлексов, возникающих в рецепторах растяжения правого и левого предсердий. Увеличение притока крови к правому предсердию возбуждает эти рецепторы, вызывая рефлекторное угнетение выработки надпочечниками гормона алъ-достерона. Недостаток в альдостероне приводит к усиленному выделению с мочой ионов Na и С1 и вследствие этого к снижению общего количества воды в крови и тканевой жидкости, а следовательно, и к уменьшению объёма циркулирующей крови. Усиленное растяжение кровью левого предсердия также вызывает уменьшение объёма циркулирующей крови и тканевой жидкости. Однако в этом случае включается др. механизм: сигналы от рецепторов растяжения тормозят выделение гипофизом гормона ва-зопрессина, что приводит к усиленному выделению воды почками. Величина МО зависит также от силы сокращений сердечной мышцы, регулируемой рядом внутрисердечных механизмов, действием гуморальных агентов, а также центр. нервной системой.

Помимо описанных центр. механизмов регуляции К., существуют и периферич. механизмы. Один из них - изменения чбазального тонуса" сосудистой стенки, осуществляющиеся даже после полного выключения всех центр. сосудодвигат. влияний. Растяжение сосудистых стенок избыточным кол-вом крови вызывает через небольшой промежуток времени падение тонуса гладких мышц сосудистой стенки и увеличение объёма сосудистого русла. Уменьшение объёма крови приводит к противоположному эффекту. Т. о., изменение "базального тонуса" сосудов обеспечивает в известных пределах ав-томатич. поддержание т. н. среднего давления в сердечно-сосудистой системе, что играет важную роль в регуляции МО. Причины непосредств. изменений "ба-зального тонуса" сосудов изучены ещё недостаточно.

Итак, ебщая регуляция К. обеспечивается сложными и многообразными механизмами, нередко дублирующими друг друга, что определяет высокую надёжность регулирования общего состояния этой важнейшей для организма системы.

Наряду с общими механизмами регуляции К., существуют центр. и местные механизмы, управляющие локальным К., т. е. К. в отдельных органах и тканях. Исследования с помощью микроэлектродной техники, изучение сосудистого тонуса отдельных областей тела (резисто-графия) и др. работы показали, что со-судодвигательный центр избирательно включает нейроны, регулирующие тонус определённых сосудистых областей. Это позволяет понижать тонус одних сосудистых областей, одновременно повышая тонус других. Местное расширение сосудов осуществляется не только вследствие снижения частоты сосудосуживающих импульсов, но в ряде случаев и в результате сигналов, приходящих по спец. сосудорасширяющим волокнам. Ряд органов снабжён сосудорасширяющими волокнами парасимпатич. нервной системы, а скелетные мышцы и кожа иннерви-руются сосудорасширяющими волокнами симпатич. системы. Расширение сосудов к.-л. органа или ткани возникает при усилении рабочей активности этого органа и далеко не всегда сопровождается общими изменениями К. Периферические механизмы регуляции К. обеспечивают увеличение кровотока через орган или ткань при возрастании их рабочей активности. Полагают, что главная причина этих реакций - накопление в тканях продуктов обмена, обладающих местным сосудорасширяющим действием (это мнение разделяется не всеми исследователями). Значит, роль в общей и местной регуляции К. играют биологически активные вещества. К ним относятся гормоны - адреналин, ренин и, возможно, вазопрессин и т. н. местные, или тканевые, гормоны - серотонин, брадикинин и др. ки-нины, простагландины и др. вещества. Роль их в регуляции К. изучается.

Система регуляции К. не является замкнутой. В неё непрерывно поступает информация из др. отделов центр. нервной системы и, в частности, из центров, регулирующих движения тела, центров, определяющих возникновение эмоционального напряжения, из коры головного мозга. Благодаря этому изменения К. возникают при любых изменениях состояния и деятельности организма, при эмоциях, психич. переживаниях и т. д. Эти изменения К. носят приспособ