БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481тематич. приёмов.

Стандарт требований к логич. строгости, остающийся господствующим в практич. работе математиков над развитием отдельных математич. теорий, сложился только к концу 19 в. Этот стандарт основан на теоретико-множественной концепции строения любой математич. теории (см. Множеств теория, Аксиоматический метод). С этой точки зрения любая математич. теория имеет дело с одним или несколькими множествами объектов, связанных между собой нек-рыми отношениями. Все формальные свойства этих объектов и отношений, необходимые для развития теории, фиксируются в виде аксиом, не затрагивающих конкретной природы самих объектов и отношений. Теория применима к любой системе объектов с отношениями, удовлетворяющей положенной в её основу системе аксиом. В соответствии с этим теория может считаться логически строго построенной только в том случае, если при её развитии не используется никаких конкретных, не упомянутых в аксиомах, свойств изучаемых объектов и отношений между ними, а все новые объекты или отношения, вводимые по мере развития теории сверх упомянутых в аксиомах, формально определяются через эти последние.

Другую сторону строения любой математич. теории освещает математич. логика. Система аксиом в изложенном выше (теоретико-множественном) понимании лишь ограничивает извне область применений данной математич. теории, указывая свойства подлежащей изучению системы объектов с отношениями, но не даёт никаких указаний относительно логич. средств, при помощи к-рых эту математич. теорию придётся развивать. Напр., свойства системы натуральных чисел с точностью до изоморфизма задаются при помощи очень простой системы аксиом. Тем не менее решение вопросов, ответ на к-рые в принципе однозначно предопределён принятием этой системы аксиом, оказывается часто очень сложным: именно теория чисел изобилует давно поставленными и очень простыми по формулировке проблемами, не нашедшими и до настоящего времени решения. Возникает, естественно, вопрос о том, происходит ли это только потому, что решение нек-рых просто формулируемых проблем теории чисел требует очень длинной цепи рассуждений, составленной из известных и уже вошедших в употребление элементарных звеньев, или же потому, что для решения нек-рых проблем теории чисел необходимы существенно новые, не употреблявшиеся ранее приёмы логич. вывода.

Современная математич. логика дала на этот вопрос определённый ответ: никакая единая дедуктивная теория не может исчерпать разнообразия проблем теории чисел. Точнее, уже в пределах теории натуральных чисел можно сформулировать последовательность проблем p1, p2, ..., Рп, ... такого рода, что для любой дедуктивной теории среди этих проблем найдётся неразрешимая в пределах данной теории (К. Гёделъ). При этом под "дедуктивной теорией" понимается теория, к-рая развивается из конечного числа аксиом при помощи построения сколь угодно длинных цепей рассуждений, составленных из звеньев, принадлежащих к конечному числу фиксированных для данной теории элементарных способов логич. вывода.

Таким образом было обнаружено, что понятие математич. теории в смысле теории, охватываемой единой системой аксиом теоретико-множественного типа, существенно шире, чем логич. понятие дедуктивной теории: даже при развитии арифметики натуральных чисел неизбежно неограниченное обращение к существенно новым способам логич. рассуждений, выходящим за пределы любого конечного набора стандартизированных приёмов.

Все те результаты, к-рые могут быть получены в пределах одной дедуктивной теории, могут быть также получены вычислением, производимым по данным раз навсегда правилам. Если

для решения нек-рого класса проблем даётся строго определённый рецепт их вычислительного решения, то говорят о математич. алгоритме. С самого создания достаточно разработанной системы математических знаков проблемы построения достаточно общих и в то же время кратких алгоритмов занимали большое место в истории М. Но только в последние десятилетия в результате развития математич. логики начала создаваться общая теория алгоритмов и "алгоритмической разрешимости" математич. проблем. Практич. перспективы этих теорий, по-видимому, весьма велики, особенно в связи с современным развитием вычислит, техники, позволяющей заменить сложные математич. алгоритмы работой машин.

2. История математики в 19 в. и начале 20 в. Начало и середина 19 в. В нач. 19 в. происходит новое значит, расширение области приложений математич. анализа. Если до этого времени осн. отделами физики, требовавшими большого математич. аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получают широкое развитие важнейшие разделы механики непрерывных сред, из к-рых только гидродинамика несжимаемой идеальной жидкости была создана ещё в 18 в. Д. Бернулли, Л. Эйлером, Ж. Д'Аламбером и Ж. Лагранжем. Быстро растут и математич. запросы техники. В нач. 19 в.- это вопросы термодинамики паровых машин, технич. механики, баллистики. В качестве основного аппарата новых областей механики и математической физики усиленно разрабатывается теория дифференциальных уравнений с частными производными и особенно теория потенциала. В этом направлении работает большинство крупных аналитиков начала и середины века - К. Гаусс, Ж. Фурье, С. Пуассон, О. Коши, П. Дирихле, Дж. Грин, М. В. Остроградский. М. В. Остроградский заложил основы вариационного исчисления для функций нескольких переменных. В результате исследований по уравнениям математич. физики в работах Дж. Стокса и др. англ, математиков возникает векторный анализ.

Несмотря на господствовавшее в естествознании начала 19 в. механистич. убеждение в возможности описать все природные явления дифференциальными уравнениями, под давлением запросов практики получает значительное дальнейшее развитие теория вероятностей. П. Лаплас и С. Пуассон создают с этой целью новый мощный аналитич. аппарат. П. Л. Чебышев даёт строгое обоснование элементов теории вероятностей и доказывает свою знаменитую теорему (1867), объединившую в одной общей формулировке известные ранее формы закона больших чисел.

Как уже отмечалось, наряду с развитием работ, возникших из новых запросов естествознания и техники, чрезвычайное внимание математиков с самого начала 19 в. привлекают вопросы строгого обоснования анализа (О. Коши, 1821, 1823). Н. И. Лобачевский (1834) и, позднее, П. Дирихле (1837) отчётливо сформулировали определение функции как совершенно произвольного соответствия. В 1799 К. Гаусс опубликовал первое доказательство основной теоремы алгебры, осторожно формулируя, однако, эту теорему в чисто действительных терминах (разложимость действительного многочлена на действительные множители первой и второй степени). Лишь значительно позже (1831) К. Гаусс явно изложил теорию комплексных чисел.

На основе ясного понимания природы комплексных чисел возникает теория функций комплексного переменного. К. Гаусс очень много знал в этой области, но почти ничего не опубликовал. Общие основы теории были заложены О. Коши, теория эллиптич. функций была развита Н. Абелем и К. Якоби. Уже на этом этапе характерно, в отличие от чисто алгоритмич. подхода 18 в., сосредоточение внимания на выяснении своеобразия поведения функций в комплексной области и основных господствующих здесь геометрич. закономерностей (начиная с зависимости радиуса сходимости ряда Тейлора от расположения особых точек, открытой О. Коши). Этот в известном смысле слова "качественный" и геомет-рич. характер теории функций комплексного переменного ещё усиливается в сер. 19 в. у Б. Римана. Здесь оказывается,что естественным геометрич. носителем аналитич. функции в случае её многозначности является не плоскость комплексного переменного, а т. н. риманова поверхность, соответствующая данной функции. К. Вейерштрасс достигает той же общности, что и Б. Риман, оставаясь на почве чистого анализа. Однако геометрич. идеи Б. Римана оказываются в дальнейшем всё более определяющими весь стиль мышления в области теории функций комплексного переменного.

В период увлечения теорией функций комплексного переменного крупнейшим представителем интереса к конкретным вопросам теории функций в действительной области является П. Л. Чебышев. Наиболее ярким выражением этой тенденции явилась созданная (начиная с 1854) П. Л. Чебышевым, исходившим из запросов теории механизмов, теория наилучших приближений.

В алгебре после упомянутого доказательства неразрешимости в радикалах общего уравнения пятой степени (П. Руффини, Н. Абель) Э. Галуа показал, что вопрос о разрешимости уравнений в радикалах зависит от свойств связанной с уравнением группы Галуа (см. Галуа теория). Задача общего абстрактного изучения групп ставится А. Кэли. Следует отметить, что даже в алгебре всеобщее признание значения теории групп произошло только после работ К. Жордана в 70-х гг. От работ Э. Галуа и Н. Абеля берёт начало также понятие поля алгебраич. чисел, приведшее к созданию новой науки - алгебраич. теории чисел. На существенно новую ступень поднимается в 19 в. и разработка старых задач теории чисел, связанных с простейшими свойствами обычных целых чисел. К. Гаусс разрабатывает (1801) теорию представимости чисел квадратичными формами, П. Л. Чебышев получает (1848, 1850) основные результаты о плотности расположения в натуральном ряде простых чисел. П. Дирихле доказывает (1837) теорему о существовании бесконечного числа простых чисел в арифметич. прогрессиях и т. д.

Дифференциальная геометрия поверхностей создаётся К. Гауссом (1827) и К. М. Петерсоном (1853). Для выработки новых взглядов на предмет геометрии основное значение, как уже было указано, имело создание Н. И. Лобачевским неевклидовой геометрии. Параллельно развивалась, долгое время независимо от неевклидовой геометрии, проективная геометрия (Ж. Понселе, Я. Штейнер, К. Штаудт и др.), также связанная с существенным изменением старых взглядов на пространство. Ю. Плюккер строит геометрию, рассматривая в качестве основных элементов прямые, Г. Грасман создаёт аффинную и метрич. геометрию и-мерного векторного пространства.

Уже в гауссовской внутренней геометрии поверхностей дифференциальная геометрия по существу также освобождается от неразрывной связи с геометрией Евклида: то, что поверхность лежит в трёхмерном евклидовом пространстве, является для этой теории случайным обстоятельством. Исходя из этого, Б. Ри-ман создаёт (1854, опубл. 1866) концепцию w-мерного многообразия с метрич. геометрией, определяемой дифференциальной квадратичной формой. Этим было положено начало общей дифференциальной геометрии я-мерных многообразий (см. Римановы геометрии). Б. Риману же принадлежат и первые идеи в области топологии многомерных многообразий.

Конец 19 в. и начало 20 в. Лишь в начале 70-х гг. 19 в. Ф. Клейн находит модель неевклидовой геометрии Лобачевского, к-рая окончательно устраняет сомнения в её непротиворечивости. Ф. Клейн подчиняет (1872) всё разнообразие построенных к этому времени "геометрий" пространств различного числа измерений идее изучения инвариантов той или иной группы преобразований. В это же время (1872) работы по обоснованию анализа получают необходимый фундамент в виде строгой теории иррациональных чисел (Р. Дедекинд, Г. Кантор и К. Вейерштрасс). В 1879-84 публикуются основные работы Г. Кантора по общей теории бесконечных множеств. Только после этого могли быть сформулированы современные общие представления о предмете М., строении математич. теории, роли аксиоматики и т. д. Широкое их распространение потребовало ещё нескольких десятилетий (общее признание совр. концепции строения геометрии обычно связывается с выходом в свет в 1899 "Оснований геометрии" Д. Гильберта).

Дальнейшее углубление исследований по основаниям математики сосредоточивается на преодолении логич. трудностей, возникших в общей теории множеств, и на исследовании строения математич. теории и приёмов конструктивного решения Математич. задач средствами математич. логики. Эти исследования возрастают в большой самостоятельный отдел М.- математич. логику. Основы математич. логики создаются в 19 в. Дж. Булем, П. С. Порецким, Э. Шредером, Г. Фреге, Дж. Пеано я др. В нач. 20 в. в этой области получены большие дос