БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

водительностью 700-800 штук в 1 ч. В СССР и за рубежом ведутся работы по повышению световой отдачи ламп до 85 лм/вт и срока службы до 12-15 тыс. ч при 8-кратном включении и выключении ламп в течение суток (вместо современного 4-кратного включения), по разработке оборудования производительностью 2500-3000 штук в 1 ч.

Лит.: Фабрикант В. А., Физика и техника люминесцентных ламп, "Успехи физических наук", 1945, т. 27, в. 2; Вавилов С. И., О "теплом" и "холодном" свете, М., 1956; Федоров В. В., Новое в физике и технике люминесцентных ламп, "Светотехника", 1966, № 9 -10; его ж е, Производство люминесцентных ламп, 2 изд., М., 1969. В. В. Фёдоров.

ЛЮМИНЕСЦЕНТНАЯ МИКРОСКОПИЯ, метод наблюдения под микроскопом люминесцентного свечения микрообъектов при освещении их сине-фиолетовым светом или ультрафиолетовыми лучами (см. Микроскоп).

ЛЮМИНЕСЦЕНТНО-БИТУМИНОЛОГИЧЕСКИЙ КАРОТАЖ, способ определения количественного содержания и качественного состава битуминозного вещества, гл. обр. в горных породах, основанный на их люминесцирующих свойствах (см. Люминесцентный анализ). Л.-б. к. применяется в сочетании с геологич. данными для оценки перспектив нефтегазоносности геологич. регионов, районов или отдельных структур, а также для стратиграфия, расчленения толщ осадочных пород, особенно если они лишены остатков фауны и флоры, и для корреляции нефтяных пластов. Л.-б. к. производится с помощью стационарных или передвижных станций, оборудованных люминесцентной аппаратурой. Для анализа битуминозности вынутого из буровой скважины керна, шлама, глинистого раствора используются ультрафио'летовые лучи солнечного света или кварцево-ртутных ламп. Результаты Л.-б. к. изображаются графически совместно с ли-толого-стратиграфич. колонкой.

Простота выполнения, несложность оборудования, большая производительность обеспечили широкое внедрение Л.-б. к. в практику геологоразведочных работ. Л.-б. к. может применяться в комплексе с др. видами каротажа (напр., с газовым каротажем).

Лит.: флоровская В. Н., Люми-несцентно-битуминологический метод в нефтяной геологии, М., 1957; Руководство по методике люминесцентно-битуминологических исследований. Л., 1966. В. Н. Флоровская.

ЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ, метод исследования различных объектов, основанный на наблюдении их люминесценции. При Л. а. наблюдают либо собственное свечение исследуемых объектов (напр., паров исследуемого газа), либо свечение специальных люминофоров, к-рыми обрабатывают исследуемый объект. Аппаратура, применяемая для Л. а., содержит источник возбуждения люминесценции и регистрирующее устройство. Чаще всего возбуждают фотолюминесценцию объекта, однако в нек-рых случаях наблюдают катодолюминесцен-цию, радиолюминесценцию и хем и люминесценцию. Фотовозбуждение обычно производится кварцевыми ртутными лампами, причём с помощью светофильтров из их спектра обычно вырезается ультрафиолетовая часть. Кроме ртутных ламп, в качестве источника света в Л. а. применяют ксеноновые лампы, искры в воздухе, лазеры. Регистрация люминесценции обычно осуществляется визуально или с помощью фотоэлектронных приборов, к - рые повышают точность Л. а.

При количественном и качественном химическом Л. а. регистрируется чаще всего самостоятельное свечение веществ. С помощью количественного химич. Л. а. по интенсивности света люминесценции определяют концентрацию люминесцирующего вещества (при малых оптич. толщинах его и концентрациях, меньших 10-4 - 10-5 г/см3). Чувствительность количественного Л. а. очень велика и достигает неск. единиц на 10-10г/см3при обнаружении ряда органических веществ. Это позволяет использовать Л. а. для контроля чистоты веществ. Лучом газового лазера удаётся возбуждать люминесценцию отдельных изотопов и проводить, т. о., изотопный Л. а.

Качественный химич. Л. а. позволяет обнаруживать и идентифицировать нек-рые вещества в смесях. В этом случае с помощью спектрофотометров изучают распределение энергии в спектре люминесценции веществ при низких температурах (см., напр., Шполъского эффект) и в вязких растворах (маслах). Нек-рые нелюминесцирующие вещества обнаруживают по люминесценции продуктов их взаимодействия со специально добавляемыми веществами.

Сортовой Л. а. позволяет по характеру люминесценции обнаруживать различие между предметами, кажущимися одинаковыми. Он применяется для диагностики заболеваний (напр., ткань, поражённую микроспррумом, обнаруживают по яркой зелёной люминесценции её под действием ультрафиолетового света), для определения поражённости семян и растений болезнями, определения содержания органич. веществ в почве и т. п. С помощью сортового Л. а. производят анализ горных пород для обнаружения нефти и газов (см. Люминесцентно-биту микологический каротаж), изучают состав нефти, минералов, горных пород, сортируют алмазы и т. д. Используя свойство алмазов люминес-цировать под действием мягких рентгеновских лучей, строят автоматич. системы их отбора. В сортовом Л. а. часто рассматривают несобственное свечение объектов. При поиске нек-рых химич. элементов (напр., редкоземельных) образцы породы обрабатывают спец. соединениями, к-рые создают с искомыми веществами люминесцирующие комплексы. В биологии живые ткани окрашивают спец. красителями, в результате взаимодействия к-рых с биологич. веществом также образуются люминесцирующие комплексы. Напр., ядра клеток соединительной ткани, окрашенные акридином оранжевым, дают яркую люминесценцию, причём, если клетка раковая, цвет излучения меняется.

Иногда исследуемый объект, не обладающий собственной люминесценцией, подвергают предварительной обработке, заключающейся в добавлении спец. люминофора. При этом люминофор либо растворяется в исследуемой жидкости, либо адсорбируется на поверхности исследуемого объекта. При исследовании движения подземных вод в них растворяют люминофор (напр., флуоресцеин) и производят Л. а. воды источников. Аналогично поступают при изучении движения прибрежных песков; в этом случае люминофор адсорбируется на поверхности песчинок.

Л. а. находит применение также в криминалистике (для определения подлинности документов, обнаружения следов токсич. веществ и т. п.), реставрационных работах, дефектоскопии. Л. а. находит применение в гигиене (определение качества нек-рых продуктов, питьевой воды) и промышленно-сан. химии (определение содержания вредных веществ в воздухе) и т. п. Способность нек-рых веществ (сцинтилляторов) люминесцировать под действием элементарных частиц высоких энергии обеспечило широкое применение методов Л. а. в ядерной физике (см. Сцинтилляционный счётчик, Люминесцентная камера).

Л. а., в к-ром применяется микроскоп, наз. люминесцентной микроскопией (см. Микроскоп).

Лит.: Люминесцентный анализ. Сб. статей под ред. М. А. Константиновой-Шлезин-гер, М., 1961. Э. А. Свириденков.

ЛЮМИНЕСЦЕНЦИЯ (от лат. lumen-свет и -escent-суффикс, означающий слабое действие), излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний. Первая часть определения отделяет Л. от теплового равновесного излучения и показывает, что понятие Л. применимо только к совокупности атомов (молекул), находящихся в состоянии, близком к равновесному, т. к. при сильном отклонении от равновесного состояния говорить о тепловом излучении или Л. не имеет смысла. Тепловое излучение в видимой области спектра заметно только при темп-ре тела в неск. сотен или тысяч градусов, в то время как люминесцировать оно может при любой темп-ре. Л. поэтому часто наз. холодным свечением. Вторая часть определения (признак длительности) была введена С. И, Вавиловым, чтобы отделить Л. от различных видов рассеяния света, отражения света, параметрического преобразования света (см. Нелинейная оптика), тормозного излучения и Черенко-ва - Вавилова излучения. От различных видов рассеяния Л. отличается тем, что при Л. между поглощением и испусканием происходят промежуточные процессы, длительность к-рых больше периода световой волны. В результате этого при Л. теряется корреляция между фазами колебаний поглощённого и излучённого света.

Первоначально понятие Л. относилось только к излучению видимого света, в наст, время оно применяется и к излучению в ближнем ультрафиолетовом и инфракрасном диапазонах.

Природные явления Л.-северное сияние, свечение нек-рых насекомых, минералов, гниющего дерева - были известны с очень давних времён, однако систематически изучать Л. стали с кон. 19 в. (Э. и А. Беккерели, Ф. Ленард, У. Крукс и др.). Интерес к исследованию свечения различных веществ привёл В. К. Рентгена к открытию.рентгеновских лучей, а в 1896 А. Беккерель, занимавшийся изучением люминофоров, открыл явление радиоактивности. В установлении основных законов Л., а также в развитии её применений исключительное значение имели работы сов. школы физиков, созданной С. И. Вавиловым.

Л. можно классифицировать по типу возбуждения, механизму преобразования энергии, временным характеристикам свечения. По виду возбуждения различают фотолюминесценцию (возбуждение светом); радиолюминесценцию (возбуждение проникающей радиацией), частными случаями к-рой являются рентгено-люминесценция (возбуждение рентгеновскими лучами), катодолюминесценция (возбуждение электронным пучком), ио-нолюминесценция (возбуждение ускоренными ионами), альфа-люминесценция (возбуждение альфа-частицами) и т. д.; электролюминесценцию (возбуждение электрич. полем); триболюминесценцию (возбуждение механическими деформациями); хемилюминесненцию (возбуждение в результате химических реакций); кандолюминесценцию (возбуждение при рекомбинации радикалов на поверхности).

По длительности свечения различают флуоресценцию (быстро затухающую Л.) и фосфоресценцию (длительную Л.) Деление это условное, т. к. нельзя указать строго определённой временной границы: она зависит от временного разрешения регистрирующих приборов.

По механизму элементарных процессов различают резонансную, спонтанную, вынужденную и рекомбинационную Л. Элементарный акт Л. состоит из поглощения энергии с переходом атома (молекулы) из основного состояния 1 (рис. 1) в возбуждённое состояние 3, безызлуча-тельного перехода на уровень 2 и излу-чательного перехода в основное состояние 1. В частном случае излучение Л. может происходить при переходе атома (молекулы) с уровня 3 на уровень 1. В этом случае Л. наз. резонансной. Резонансная Л. наблюдается чаще всего в атомных парах (Hg, Cd, Na и др.), в нек-рых простых молекулах, примесных кристаллах.
[1509-2.jpg]

Рис. 1. Схема квантовых переходов при элементарном процессе люминесценции: 1 - основной энергетич. уровень; 2 - уровень излучения; 3 - уровень возбуждения. Переход 3 - 1, показанный пунктирной стрелкой, соответствует резонансной люминесценции, переход 2-1 - спонтанной люминесценции.

В большинстве случаев вероятность перехода атома (молекулы) с уровня 3 на уровень 2 больше вероятности прямого перехода на основной уровень 1. Уровень 2 чаще всего лежит ниже уровня поглощения 3, поэтому часть энергии теряется на тепло (возбуждаются колебания атомов) и квант света Л. имеет меньшую энергию (и большую длину волны), чем кванты возбуждающего света (Стокса правило). Однако возможно наблюдение антистоксовой Л. В этом случае за счёт поглощения колебательной энергии молекула переходит на более высокий относительно уровня 3 излучающий уровень 2; энергия испущенного кванта при антистоксовой Л. больше энергии возбуждающего кванта, её интенсивность мала.

Уровень излучения 2 может принадлежать как тому же атому (молекуле), к-рый поглотил энергию возбуждения (в таком случае атом наз. центром свечения, а переход внутрицентровым), так и др. атомам. В простейшем случае, когда энергия возбуждения остаётся в том же атоме, Л. наз. спонтанной. Этот вид Л. характерен для атомов и молекул в парах и растворах и для примесных атомов в кристаллах. В нек-рых случаях атом (молекула), прежде чем перейти на уровень излучения 2 (рис. 2), оказывается на промежуточном метастабильном уровне 4 (см. Метастабилъное состояние) и для перехода на уровень излучения ему необходимо сообщить дополнительную энергию, напр, энергию теплового движения или инфракра