БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

тер этого поля связан с симметрией кристаллов. Все кристаллы, кроме кристаллов кубич. сингоний, оптически анизотропны.

Оптич. анизотропия прозрачных немагнитных кристаллов обусловлена анизотропией диэлектрической проницаемости е. В изотропных средах вектор электрич. индукции D связан с вектором электрического поля Е соотношением D = еЕ, где Е - скалярная величина, в случае переменных полей зависящая от их частоты (см. Диэлектрики). Т. о., в изотропных средах векторы D и Е имеют одинаковое направление. В кристаллах направления векторов О и Е не совпадают друг с другом, а соотношение между величинами D и Е имеет более сложный вид, т. к. диэлектрич. проницаемость Е, описываемая тензором, зависит от направления в кристалле. Следствием этого и является наблюдаемая анизотропия оптич. свойств кристаллов, в частности зависимость скорости распространения волны v и преломления показателя п от направления. Зависимость компонент тензора диэлектрич. проницаемости от частоты волны объясняет дисперсию оптич. свойств кристаллов.

Зависимость диэлектрич. проницаемости е и, следовательно, показателя преломления п от направления может быть представлена графически. Если из произвольной точки О кристалла провести по всем направлениям радиусы-векторы r, модули к-рых где е - диэлектрич. проницаемость в направлении r , то концы векторов r будут лежать на поверхности эллипсоида, наз. оптической индикатрисой (рис. 1). Оси симметрии этого эл-

Рис. 1. Оптическая индикатриса двухосного кристалла - трёхосный эллипсоид; его оси симметрии ох, оу и ozназываются главными осями индикатрисы; пх, ny, пг - показатели преломления вдоль главных осей. 1 и 2 - лва круговых сечения эллипсоида, и - оптические оси кристалла.

липсоида определяют три взаимно перпендикулярных главных направления в кристалле. В прямоугольной декартовой системе координат, оси к-рой совпадают с гл. направлениями, ур-ние оптич. индикатрисы имеет вид

где пх, пуи nz - значения я вдоль гл. направлений (гл. значения тензора диэлектрич. проницаемости и п). Оптич. осью кристалла наз. прямую, проходящую через данную точку О кристалла перпендикулярно к плоскости кругового сечения оптич. индикатрисы.

В случае оптически изотропных кубич. кристаллов е не зависит от направления, и оптич. индикатриса превращается в сферу с радиусом В кристаллах средних сингоний (тригональной, тетрагональной и гексагональной) одно из гл. направлений совпадает с гл. осью симметрии кристалла. В этих кристаллах оптич. индикатриса - эллипсоид вращения, и кристаллы имеют только одну оптич. ось, совпадающую с осью вращения эллипсоида. Такие кристаллы наз. одноосными. Одноосный кристалл наз. оптически положительным (+), если его оптич. ось совпадает с большей осью оптич. индикатрисы (эллипсоид вытянут вдоль оси вращения), и оптически отрицательным (-), если эллипсоид сжат вдоль оси вращения. Кристаллы низших сингоний (ромбической, моноклинной и триклинной) наз. двухосными. Их оптич. индикатриса - трёхосный эллипсоид, имеющий 2 круговых сечения и 2 оптич. оси (рис. 1).

Вследствие несовпадения направлений векторов D и Е поляризованная плоскаямонохроматич. волна в кристалле характеризуется двумя тройками взаимно перпендикулярных векторов D, H, с и Е, Н, v' (рис. 2). Скорость Р' совпадает по направлению с Пойнтинга вектором S и равна скорости переноса энергии волной. Её наз. лучевой скоростью волны. Скорость с наз. нормальной скоростью волны. Она равна скорости распространения фазы и фронта волны по направлению нормали N к фронту. Величины v и v' связаны соотношением

где ос - угол между векторами D и Е. Нормальная и лучевая скорости волны v определяются из уравнения Френеля - осн. ур-ния К.:

Здесь Nx, Nyи Nz - проекции вектора нормали N на гл. направления кристалла;

- гл. фазовые

скорости волны; с - скорость света в вакууме; пх, пy, пг - гл. показатели преломления кристалла.

Т. к. ур-ние Френеля - квадратное относительно V, то в любом направлении N имеются 2 значения нормальной скорости волны V1и v2, совпадающие только в направлении оптич. осей кристаллов. Если из точки О откладывать по всем направлениям N векторы соответствующих им нормальных скоростей г, то концы векторов будут лежать на поверхности, наз. поверхностью нормалей. Это - двух-полостная поверхность; каждая полость соответствует одному значению v для данного направления N. В случае одноосного кристалла одна из поверхностей - сфера, вторая - овалоид, к-рый касается сферы в 2 точках пересечения её с оптич. осью. У двухосных кристаллов эти поверхности пересекаются в 4 точках, лежащих на 2 оптич. осях (бинормалях).

Аналогично, геометрич. место точек, удалённых от точки О на расстояние v', наз. лучевой поверхностью, или поверхностью волны. Это - волновая поверхность для волн, распространяющихся- в кристалле от точечного источника, расположенного в точке О. Это также - двухполостная поверхность. В одноосных кристаллах одна из поверхностей - сфера, вторая - эллипсоид вращения вокруг оптич. оси oz. Сфера и эллипсоид касаются друг друга в точках их пересечения с оптич. осью. В положит. кристаллах эллипсоид вписан в сферу (рис. 3, а), в отрицательных - сфера вписана в эллипсоид (рис. 3,6). В двухосных кристаллах поверхности пересекаются друг с другом в 4 точках, попарно лежащих на 2 прямых, пересекающихся в точке О (6ирадиали).

Т. о., в кристаллах в произвольном направлении N могут распространяться две плоские волны, поляризованные в 2 взаимно перпендикулярных плоскостях. Направления векторов D1 и D2 этих волн совпадают с осями эллипса, получающегося при пересечении оптич. индикатрисы с плоскостью, перпендикулярной N и проходящей через точку О. Нормальные скорости этих волн:

. Векторы

этих волн также лежат в 2 перпендикулярных плоскостях, причём им соответствуют 2 лучевых вектора S1 и S2 и 2 значения лучевой скорости V1= v1/cosa и v2 = v2/cosa. Аналогично, для заданного направления луча S возможны 2 направления колебаний вектора Е (E1E2), соответствующие 2 значениям лучевой скорости v'1 и v'2.

Зависимость лучевой скорости плоской волны, распространяющейся в кристалле, от направления распространения и характера поляризации волны приводит к тому, что световые лучи в кристалле раздваиваются. В одноосном кристалле один из преломлённых лучей подчиняется обычным законам преломления и поэтому наз. обыкновенным О, а второй - не подчиняется этим законам (не лежит в плоскости падения) и наз. н е-обыкновенным е (см. Двойное:лучепреломление). В двухосном кристалле оба луча необыкновенные.

Две возникающие при преломлении световые волны при распространении внутри кристалла приобретают за счёт различия показателей преломления и гео-метрич. пути разность хода, оставаясь когерентными (см. Когерентность). С помощью поляризационного устройства можно свести направления колебаний в вышедших из кристалла волнах в одну плоскость и наблюдать их интерференцию. Интерференция линейно поляризованного белого света проявляется в виде окраски кристалла, зависящей от приобретённой этим пучком разности хода (см. Интерференция света). Иногда наблюдаются характерные фигуры интерференции (коноскопические фигуры), вид к-рых зависит от ориентации кристалла (рис. 4).

Рис. 4. Коноско-пическая фигура одноосного кристалла (сечение в плоскости, перпендикулярной к оптической оси).

В кристаллах нек-рых классов симметрии, помимо двойного лучепреломления, возможно вращение плоскости поляризации. В таких кристаллах вдоль каждого направления могут распространяться две эллиптически поляризованные волны (с противоположными направлениями обхода), каждая со своим показателем преломления. Только в направлении оптич. оси поляризация волн оказывается круговой, что приводит к вращению плоскости поляризации падающего на кристалл линейно поляризованного света.

В случае сильно поглощающих кристаллов линейно поляризованная волна, распространяющаяся в кристалле, расщепляется на 2 эллиптически поляризованные волны, но с одинаковым направлением обхода. В таких кристаллах наблюдается различное поглощение волн, обладающих разной поляризацией, и др. особенности.

Каждый кристалл обладает присущим ему комплексом кристаллооптич. свойств, по к-рым он может быть идентифицирован. Важнейшими из них для одноосных кристаллов являются показатели преломления обыкновенной по и необыкновенной пе волн; разность между ними dn (величина двойного лучепреломления), а также зависимость перечисленных характеристик от длины волны (различного рода дисперсии). Двухосные кристаллы характеризуются более сложным комплексом свойств. В прикладной К., задачей к-рой является анализ минералов и горных пород, разработаны различные методы измерения этих величин для различных препаратов минералов в виде порошков, тонких пластин (шлифов). Главные из них: иммерсионный метод измерения показателей преломления с помощью спец. жидкостей или сплавов с известными показателями преломления, фёдоровский метод для определения ориентации индикатрисы с помощью столика, поворачивающего кристалл вокруг различных осей (см. Фёдорова столик). Большинство кристаллооптич. измерений проводится с помощью поляризационного микроскопа. Существуют справочники, в к-рых собраны сведения об оптич. свойствах большинства известных минералов (см. Минералогия).

Большое значение методы К. имеют в физич. исследованиях (напр., для получения поляризованного света, анализа эллиптически поляризованного света, в различных приборах для управления световым пучком), в химич. технологии (анализ веществ, оптическая активность).

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., М., 1970; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Фёдоров Ф. И., Оптика анизотропных сред, Минск, 1958; Шубников А. В., Основы оптической кристаллографии, М., 1958; Белянкин Д. С., Петров В. П., Кристаллооптика, 4 изд., М., 1951; Татарский В. Б., Кристаллооптика и иммерсионный метод исследования минералов, М., 1965; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965.

В. Б. Татарский, Б. Н. Гречушников.



КРИСТАЛЛОТУФ, горная порода, разновидность туфа вулканического, состоящая почти целиком из кристаллов или их обломков (кристаллокластич. туф). Образуется при вулканич. извержениях, когда в воздух выбрасываются обломки лавы с кристаллами, образовавшимися в вулканич. очаге. Вспучившееся лёгкое стекло относится ветром далеко от места извержения, а плотные и тяжёлые кристаллы выпадают раньше, образуя К.

КРИСТАЛЛОФИЗИКА, физическая кристаллография, изучает физич. свойства кристаллов и кристаллич. агрегатов и изменение этих свойств под влиянием различных воздействий. В отношении мн. физич. свойств дискретность решётчатого строения кристалла не проявляется, и кристалл можно рассматривать как однородную, но анизотропную среду (см. Анизотропия). Понятие однородности среды означает рассмотрение физич. явлений в объёмах, значительно превышающих нек-рый характерный для данной кристаллич. среды объём: объём элементарной ячейки для монокристалла, средний объём кристаллита для кристаллич. агрегатов (металлов в поликристаллич. форме, горных пород, пьезоэлектрич. текстур и т. д.). Анизотропность среды означает, что её свойства изменяются с изменением направления, но одинаковы в направлениях, эквивалентных по симметрии (см. Симметрия кристаллов).

Нек-рые свойства кристаллов, напр, плотность, характеризуются скалярными величинами. Физич. свойства среды, отражающие взаимосвязь между двумя векторными величинами (поляризация среды Р и электрическое поле Е, плотность тока J и электрическое поле Е и т. д.) или псевдовекторными величинами (магнитная индукция В и напряжённость магнитного поля Н и т. д.), описываются полярными тензорами 2-го ранга (напр., тензоры диэлектрической восприимчивости, электропроводности, магнитной проницаемости и др.). Нек-рые физич. поля в кристаллах, напр. поле механич. напряжений, сами являются тензорными полями. Связь между полем напряжений и др. физич. полями (электрическим, магнитным) или свойствами (тензором деформаций, тензорами оптич. констант) описывается тензорами высших рангов, характе