БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ерманидов, М., 1971; Wolf Н. F.. Silicon semiconductor data, Oxf.- N. Y., 1965.



КРЕМНИЙОРГАНИЧЕСКИЕ ЖИДКОСТИ, силиконовые масла, органосилоксановые олигомеры или полимеры невысокой мол. м., способные сохранять текучесть в широком интервале темп-р. Наибольшее распространение получили К. ж. с макромолекулами линейной (I) и разветвлённой (II) структуры и блокированными концами, чаще всего - полидиметилсилоксановые (R=R'=СН3), полидиэтилсилоксановые (R = R' = С2Н5) и полиметилфенилсил-оксановые (R = CH3, R' = С6Н5) с мол. м. от нескольких сот до 30 000 (см. также Кремнийорганические полимеры).

К. ж. по внешнему виду напоминают масла нефтяные. К. ж. обладают очень ценными свойствами: гидрофобностью, высокой сжимаемостью, физ. н хим. инертностью, относительно малым изменением вязкости при изменении темп-ры, стойкостью при высокой темп-ре даже в окислительной среде и т. д.

Коэфф. адиабатич. сжимаемости при 30 оС для полидиметилсилоксанов, имеющих вязкость 0,65 и 50 мм2/сек, или сст, составляет соответственно 1,74*10-9 м2/н (1,74*10-10 см2/дин) и 1,09*10-9м2/н (1,09*10-10 см2/дин) [для этиленглико-ля-0,33*10-9м2/н (0,33*10-10см2/дин)]. При сжатии К. ж. их вязкость заметно возрастает. К. ж. обладают высокими диэлектрич. свойствами.

При нагревании полидиметилсилокса-новых жидкостей на воздухе до 175 °С они заметно не изменяются; при 200 °С начинается окисление. Нек-рые элементы (Си, Pb, Se, Те) катализируют разложение силоксановой цепи. В инертной атмосфере термич. деструкция становится заметной только при темп-ре выше 250 °С. Полиметилфенилсилоксаны начинают разлагаться на воздухе при 250 °С, а в инертной атмосфере лишь при 300 °С.

К. ж. синтезируют теми же методами, что и прочие полиорганосилоксаны.

К. ж. часто используют для гидро-фобизации стекла, керамики, тканей, бумаги и др. материалов. Их применяют также в гидроприводах и гидравлич. муфтах сцепления; при этом благодаря малой вязкости полидиметилсилоксанов можно почти вдвое снизить общую массу гидросистемы и уменьшить диаметр трубопроводов. Высоковязкие К. ж. применяют в разнообразных демпфирующих устройствах. Высокая сжимаемость К. ж. позволяет создавать "жидкие пружины". Многие К. ж. служат смазочными маслами или основой для консистентных смазок, часто в сочетании с нефтяными или синтетическими органическими маслами. Такие смазки по стабильности реологич. свойств в широком интервале температур превосходят нефтяные масла. К. ж. часто используют как жидкие диэлектрики в трансформаторах, конденсаторах, нек-рых деталях радиоэлектронного оборудования. Они могут служить также пеногасителями, антиадге-зионными смазками для прессформ, жидкостями для глубоковакуумных диффузионных насосов. К. ж. находят применение и как составная часть кремов, лосьонов и помад.








Лит. см. при ст. Кремнийорганические полимеры. А. А. Жданов.



КРЕМНИЙОРГАНИЧЕСКИЕ КАУЧУКИ, Кремнийорганические полимеры, обладающие каучукоподобными свойствами. Промышленные К. к. относятся к классу полиорганосилоксанов. Макромолекула К. к. имеет структуру

где R и R'- алкил, алкенил, арил. R"- водород, алкил или -Si(R)з. Осн. промышленные К. к.-теплостойкие диметил-метилвинилсилоксановые (отечеств. марка С КТВ); их макромолекулы содержат св. 99% диметилсилоксановых (R = R' = = СН3-) и до 1% метилвинилсилоксано-вых (R = СН3-, R'=CH2=CH-) звеньев. Выпускают также морозостойкие фе-нилсилоксановые (С КТФ, С КТФВ) и маслостойкие фторсилоксановые К. к. (С КТФТ). К. к. получают гидролизом диорганодихлорсиланов (напр., диметил-дихлорсилана) и последующей полимеризацией образовавшихся циклосилокса-нов в присутствии катализаторов - щелочей или серной к-ты. К. к.- прозрачные бесцветные желеподобные продукты без вкуса и запаха. Их мол. масса (3-8)*105, плотность 960 - 980 кг/м3 (0,96-0,98 г/см2), темп-pa стеклования ок. -130 °С. Каучуки С КТВ растворимы в углеводородах, сложных и простых эфирах, не растворимы в спиртах, ке-тонах. К. к. вулканизуют гл. обр. органическими перекисями (напр., перекисями кумила, трет-бутила); применяют также радиац. вулканизацию (см. Вулканизация). К- к. относятся к каучукам спец. назначения. Резины на их основе отличаются высокой атмосферо- и теплостойкостью и превосходят резины из всех др. каучуков по морозостойкости (наиболее морозостойки фенилзамещённые К. к.) и электроизоляц. свойствам. Температурные пределы эксплуатации резин из К. к. от -100 до 250 °С, удельное объёмное электрическое сопротивление при 20 и 250 °С - соответственно 10 Том-м и 1 Том-м (1*1015 и 1*1011 ом*см). Прочность резин из К. к. при растяжении не превышает 10 Мн/м2(100 кгс/см2).

Основная область применения К. к.- производство разнообразных электроизоляц. материалов. Используют также в авиац. пром-сти, напр. для изготовления прокладок, теплостойких воздухопроводов; нек-рые К. к. применяют для изготовления герметизирующих составов. Физиол. инертность К. к. позволяет широко использовать их в мед. практике: из них изготовляют трубки для переливания крови, искусств. клапана сердца, различные протезы. Основные зарубежные производители К. к.: Великобрита-

ния (марки Е-301, Е-360, LS-53 и др.), Франция (RP-35, силастен), ФРГ (сило-прен), США, Япония.

Лит. см. при ст. Каучуки синтетические.

КРЕМНИЙОРГАНИЧЕСКИЕ КЛЕЙ, композиции на основе кремнийорганиче-ских полимеров. В зависимости от назначения различают 3 группы К. к.: 1) для склеивания металлов и термостойких неметаллич. материалов; 2) для склеивания теплостойких резин и крепления их к металлам; 3) для крепления теплозвукоизоляц. материалов к сталям и сплавам титана.

К. к. 1-й группы представляют собой смеси различных кремнийорганич. полимеров с наполнителями (асбест и др. не-органич. материалы) и отвердителями (перекиси, амины и др.). Клеевые соединения работоспособны при темп-pax от -60 до 1000 °С (в течение нескольких ч), устойчивы к старению в различных условиях, а также к действию топлив и масел. При склеивании металлов клеи этой группы образуют прочные, но хрупкие соединения. Прочность соединения стек-лотекстолита, графита и асбоцемента равна или выше прочности склеиваемых материалов. Отверждение этих клеёв происходит при нагревании (до 250 °С), однако модификация их органич. добавками позволяет получить клеи, отвержда-ющиеся при комнатной темп-ре.

К. к. 2-й группы, как правило, готовят на основе растворов кремнийорганиче-ских каучуков с добавками различных крсмнийорганических полимеров, а также окислов и гидроокисей тяжёлых металлов. Клеевые соединения на основе клеёв этой группы выдерживают вибронагрузки в широком диапазоне темп-р, устойчивы к воздействию трансформаторного масла, керосина, влаги и атмосферных условий. В ряде случаев клеи этой группы применяют для склеивания стекла, тканей, полиэтилентерефталата, фторопласта-4, керамики и др., а также используют в качестве герметизирующих материалов в самолёто- и ракетостроении.

К. к. 3-й группы представляют собой смеси модифицированных кремнийорганич. полимеров с органич. полимерами в органич. растворителях, с отвердителями (напр., аминами) и часто активными наполнителями (напр., ZnO). Специфика этих клеёв - возможность склеивания теплозвукоизоляц. материалов без нагрева и давления с образованием клеевых соединений, работоспособных при темп-ре 300-400 °С. Активный наполнитель придаёт клею способность быстро "схватываться", однако при этом жизнеспособность К. к. ограничивается 45-60 мин.

Особую группу К. к. составляют композиции для изготовления липких лент. Они обычно содержат кремнийорганиче-ские каучуки и Кремнийорганические жидкости, макромолекулы к-рых имеют концевые гидроксильные группы, а также кремнийорганич. мономер, минеральный наполнитель и органич. добавку.Композицию наносят тонким слоем на полимерную плёнку или стеклоленту, а готовое изделие применяют в качестве электроизоляц. ленты.

Лит.: Кардашов Д. А.. Синтетические клеи, 2 изд., М., 1968. с. 213 - 32.

М. М. Левицкий.



КРЕМНИЙОРГАНИЧЕСКИЕ ЛАКИ, лаки на основе кремнийорганических полимеров - полиорганосилоксанов (гл. обр. полиметилфенилсилоксанов). Растворителями в К. л. служат ароматич. углеводороды и их смеси с эфирами, спиртами, кетонами. Для снижения температуры высыхания, а также улучшения адгезии к подложке, механич. свойств, масло- и бензостойкости плёнок в состав нек-рых К. л. вводят органич. плёнкообразующие (напр., алкидные или эпоксидные смолы). При получении эмалей на основе К. л. применяют обычно неорганич. пигменты (двуокись титана, окись железа, алюминиевую пудру); в качестве наполнителей используют мел, тальк, молотую слюду. Содержание сухого вещества в К. л. может изменяться в пределах 30-70%, продолжительность высыхания от 24 ч при комнатной темп-ре до 0,5-2 ч при 150- 200 °С. Плёнки К. л. высокотемпературной сушки обладают, как правило, лучшими эксплуатац. свойствами. Толщина покрытий, наносимых чаще всего краскораспылителем, составляет 45-55 мкм. Плёнки лаков могут длительно работать при 180-200 °С, кратковременно (500- 1000 ч) при 250-300 оС, плёнки нек-рых эмалей - при 400-500 °С. Нижний температурный предел эксплуатации покрытий - от -50 до -60 °С. Электрич. прочность плёнок при обычных темп-pax составляет 50-120 кв/мм, удельное объёмное электрич. сопротивление 1-102 Том*м (1014-1016 ом*см). Покрытия стойки к действию атмосферных факторов, в т. ч. и тропич. влажности, а также плесневых грибков. К. л. и эмали на их основе применяют гл. обр. как изоляц. материал для электротехнич. оборудования, эксплуатируемого при высоких темп-pax, а также для защиты различных изделий, строительных и др. конструкций от воздействия высоких темп-р, солнечной радиации и др.

Лит. см.при статьях Кремнийорганические полимеры. Лаки.



КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ, высокомолекулярные соединения, содержащие атомы кремния, углерода и др. элементов в элементарном звене макромолекулы. В зависимости от хим. строения основной цепи К. п. делят на 3 осн. группы: 1) с неорганич. главными цепями макромолекул, к-рые состоят из чередующихся атомов кремния и др. элементов (О, N, S, Al, Ti, В и др.); при этом углерод входит лишь в состав групп, обрамляющих главную цепь; 2) с органонеорганич. главными цепями макромолекул, к-рые состоят из чередующихся атомов кремния и углерода, а иногда и кислорода; 3) с органич. главными цепями макромолекул (см. табл.). Наиболее подробно изучены и широко применяются полиорганосилоксаны, а также поли-металлоорганосилоксаны и полиоргано-силазаны.

В зависимости от строения гл. полимерной цепи К. п., подобно другим полимерам, можно разделить на линейные, разветвлённые, циклолинейные (лестничные) и сшитые (в т. ч. циклосетчатые).



Полиорганосилоксаны. Многие особенности механич. и физико-химич. свойств этих полимеров связаны с высокой гибкостью их макромолекул и относительно малым межмолекулярным взаимодействием. Высокая гибкость силокса-новой цепи утрачивается при переходе от линейной структуры к лестничной.

Линейные и разветвлённые полиорганосилоксаны с невысокой мол. м.- вязкие бесцветные жидкости. Высокомолекулярные линейные полиорганосилоксаны - эластомеры, а сшитые и разветвлённые - эластичные или хрупкие стеклообразные вещества. Линейные, разветвлённые и лестничные полимеры растворимы в большинстве органич. растворителей (плохо - в низших спиртах). Поли-органосилоксаны устойчивы к действию большинства к-т и щелочей; разрыв си-локсановой связи Si - О вызывают лишь концентрированные щёлочи и концентрированная серная к-та.

Полиорганосилоксаны характеризуются высокой термостойкостью, обусловленной высокой энергией связи Si - О, а также отличными диэлектрич. характеристиками. Так, сшитый полидиметил-фенилсилоксан при 20 оС имеет тангенс угла диэлектрич. потерь (1-2)*10-3, диэлектрич. проницаемость 3-3,5 (при 800 гц), удельное объёмное электрич-сопротивление 103 Том*м (1017 ом*см) и электрич. прочность 70-100 кв/мм при толщине образца 50 мкм.

Механич. прочность полиорганосило-ксанов невысока по сравнению с прочностью таких высокополярных пол