БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Бондаренко В. М., Использование космических лучей в геологии, М., 1965. Популярная лит.: Росси Б., Космические лучи, пер. с англ., М., 1966; Добро-тин Н. А., Космические лучи, М., 1963; Жданов Г. Б., Частицы высоких энергий, М., 1965; Гинзбург В. Л., Происхождение космических лучей, М., 1968.

Г. Б. Жданов.





КОСМИЧЕСКИЕ ОБСЕРВАТОРИИ, то же, что внеатмосферные обсерватории.



КОСМИЧЕСКИЕ СКОРОСТИ первая, вторая, третья, критические значения скорости космич. аппарата в момент выхода его на орбиту (т. е. в момент прекращения работы двигателей ракеты-носителя) в гравитационном поле. Каждая К. с. вычисляется по определённым формулам и может быть физически интерпретирована как минимальная начальная скорость, при к-рой космич. аппарат, запускаемый с Земли, может или стать искусств, спутником (первая К. с.), или выйти из сферы действия тяготения Земли (вторая К. с.), или покинуть Солнечную систему, преодолев притяжение Солнца (третья К. с.). В лит-ре встречаются 2 варианта матем. определений К. с. В одном из вариантов К. с. может быть вычислена для любой высоты над земной поверхностью или любого расстояния от центра Земли.

Первая К. с. v, на расстоянии г ог центра Земли определяется по формуле где f - постоянная тяготения, М - масса Земли. Принимается (см. фундаментальные астрономические постоянные) fM = 398 603 км3/сек2. В небесной механике эта скорость наз. также круговой скоростью, т. к. в задаче двух тел движение по кругу радиуса г тела с массой m вокруг др. тела, обладающего несравнимо большей массой М (при М»»г), происходит именно с такой скоростью.

Если в момент выхода на орбиту космич. аппарат имеет скорость , перпендикулярную направлению на центр Земли, то его орбита (при отсутствии возмущений) будет круговой. При va
Вторая К. с. Си на расстоянии т от центра Земли определяется по формуле

Вторая К. с.

называется также скоростью освобождения (убегания, ускользания), или п а-раболической скоростью, т. к. при начальной скорости Юо = fn тело с массой m в задаче двух тел будет двигаться относительно тела с массой М (при ) по параболич.
орбите и удалится сколь угодно далеко, освобождаясь, в известном смысле, от гравитац. воздействиям. Скорости, меньшие параболической, наз. эллиптическими, а большие - гиперболическими, т. к. при таких начальных скоростях движение в задаче двух тел с массами т и ? (при М»т) происходит по эллиптич. или гиперболич. орбитам соответственно.

Значения первой и второй К. с. для различных высот h, отсчитываемых от уровня моря на экваторе (h = r - 6378 км), приведены в табл. 1.

Табл. 1.-Первая (v1) и вторая vII) космические скорости для разных высот (h) над уровнем моря

h, км

vI, км/сек

vII , км/сек
0

7,90

11,18
100

7,84

11,09
200

7,78

11 ,01
300

7,73

10,93
500

7,62

10,77
1000

7,35

10,40
5000

5,92

8,37
10000

4,94

6,98

Понятия К. с. применяются также при анализе движения космич. аппаратов в гравитац. полях любых планет или их естеств. спутников, а также Солнца. Так можно определить К. с. для Венеры, Луны, Солнца и др. Эти скорости вычисляются по приведённым выше формулам, в к-рых в качестве ? принимается масса соответствующего небесного тела. Значения fM для нек-рых небесных тел приведены в табл. 2.

Табл. 2.- Значения гравитационной постоянной для Луны, Солнца и планет




Небесное тело

fM, км3/ сек2
Луна

4, 903*103
Солнце

1,327*1011
Меркурий

2,169*104
Венера

3, 249*105
Земля

3,986*105
Марс

4, 298*104
Юпитер

1,267*108
Сатурн

3,792*107
Уран

5,803*106
Нептун

7, 026*106
Плутон

3,318*105

Третья К. с. vIII определяется из условия, что космич. аппарат, достигнув границы сферы действия тяготения Земли (т. е. расстояния ок. 930 000 км от Земли), имеет относительно Солнца параболич. скорость (вблизи орбиты Земли эта скорость равна 42,10 км/сек). Относительно Земли в этот момент скорость космич. аппарата не может быть меньше 12,33 км/сек, для чего, согласно формулам небесной механики, при запуске вблизи поверхности Земли (на вые. 200 км) скорость космич. аппарата должна составлять ок. 16,6 км/сек.

В др. варианте матем. определения первая, вторая и третья К. с. вычисляются по тем же формулам, но только для самой поверхности шаровой однородной модели Земли (радиусом 6371 км). В этом смысле первая К. с. является круговой скоростью, а вторая К. с.- параболической скоростью, рассчитанными для поверхности Земли. При этих условиях К. с. имеют единств, значения: первая К. с. равна 7,910 км/сек,вторая-11,186 км/сек, третья - 16,67 км/сек. При гипотетич. запуске космич. аппарата с поверхности такой модели Земли, принимаемой абсолютно гладкой и лишённой атмосферы, К. с. в точности отвечают физич. интерпретации, указанной в начале статьи.

Аналогично К. с. могут быть вычислены также и для поверхностей др. небесных тел. Так, для Луны первая К. с. составляет 1,680 км/сек, вторая - 2,375 км/сек. Вторая К. с. для Венеры и Марса равна, соответственно, 10,4 км/сек и 5,0 км/сек.

Лит.: Дубошин Г. Н., Небесная механика. Основные задачи и методы, М., 1963; Левантовский В. И., Механика космического полета в элементарном изложении, М., 1970; Руппе Г. О., Введение в астронавтику, пер. с англ., т. 1, М., 1970. Ю.Л.Рябов.

КОСМИЧЕСКИЙ КОРАБЛЬ, космический летательный аппарат, предназначенный для полёта людей (пилотируемый космич. летательный аппарат). Отличительная особенность К. к.- наличие герметич. кабины с системой жизнеобеспечения для космонавтов. К. к. для полёта по геоцентрич. орбитам наз. кораблями-спутниками, а для полёта к др. небесным телам - межпланетными (экспедиционными) К. к. Разрабатываются транспортные К. к. многократного использования для доставки людей и грузов с Земли на низкую геоцентрич. орбиту и обратно, напр, для связи с долговременной орбитальной станцией. Транспортировка людей и грузов с низкой геоцентрич. орбиты на более высокую, вплоть до стационарной, и обратно предусматривается с помощью автоматич. космич. ракет-буксиров. Изучаются проекты автоматич. и К. к.-буксиров для перехода с геоцентрич. орбиты на селе-ноцентрич., планетоцентрич. и обратно.

Созданы и осуществили полёты: сов. К. к.-спутники серии «Восток»·, "Восход", «Союз» (последний может служить транспортным кораблём одноразового действия); амер. К. к.-спутники серии "Меркурий", "Джемини" и экспедиционные К. к. «Аполлон» для полёта на Луну. К. к. «Аполлон» может использоваться как транспортный одноразового действия для полёта на геоцентрич. и селеноцент-рич. орбиты. Перечисленные К. к. состоят из неск. отсеков и снабжены системами: жизнеобеспечения, двигательных установок, навигации и управления, энергопитания, связи, аварийного спасения, возвращения на Землю и др.

Лит.: Пилотируемые космические корабли. Проектирование и испытания. Сб. ст., пер. с англ., М., 1968; Освоение космического пространства в СССР, М., 1971.

Г. А. Назаров.



КОСМИЧЕСКИЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ (КЛА), аппарат, предназначенный для полёта в космос или в космосе, напр, ракеты-носители (космические ракеты), искусств, спутники Земли (ИСЗ) и др. небесных тел. Наименование КЛА- общее, включает различные виды таких аппаратов, в т. ч. использующие и нереактивный принцип движения (напр., солнечный парус и др.). Ракеты-носители (космич. ракеты) являются средством достижения необходимой скорости для осуществления космич. полёта КЛА, к-рые можно разделить на 2 осн. группы: а) околоземные орбитальные КЛА, движущиеся по геоцентрич. орбитам, не выходя за пределы сферы действия Земли (ИСЗ); б) межпланетные КЛА, к-рые в полёте выходят за пределы сферы действия Земли и входят в сферу действия Солнца, планет или их естеств. спутников. При этом различают автоматич. КЛА (автоматич. ИСЗ, искусств, спутники Луны - ИСЛ, Марса - ИСМ, Солнца - ИСС и т. п., автоматич. межпланетные станции - АМС) и пилотируемые (космич. корабли-спутники, обитаемые орбитальные станции, межпланетные космич. корабли). Большая часть указанных типов КЛА уже создана; ведётся разработка межпланетных кораблей для полёта и высадки на др. планеты, транспортных космич. кораблей многократного использования и др.

Полёт КЛА делится на след, участки: выведения - КЛА сообщается необходимая космич. скорость в заданном направлении; орбитальный, на к-ром движение КЛА происходит в основном по инерции, по законам небесной механики; участок посадки. В ряде случаев КЛА снабжаются ракетными двигателями, позволяющими на орбитальном участке изменять (корректировать) траекторию движения или тормозить КЛА при посадке. Для совр. КЛА, использующих хим. ракетные двигатели, протяжённость участков полёта с работающими двигателями (выведение, коррекция, торможение) значительно меньше, чем участков орбитального полёта.

Ракета - единств, доступное средство для полётов в космич. пространство. Макс, скорость ракеты зависит от скорости истечения реактивной струи, определяемой видом топлива и совершенством двигателя, и отношения массы топлива к общей (начальной) массе ракеты, т. е. от совершенства конструкции ракеты, а также от массы полезного груза. Скорость истечения реактивной струп из двигателя при совр. хим. топливах составляет 3000-4500 м/сек; при этом одноступенчатая ракета рациональной конструкции практически не способна развить скорость, необходимую для космического полёта (ок. 8 км/сек). Поэтому распространены составные ракеты, у к-рых в полёте, по мере расходования топлива, отделяются части конструкции (топливные баки, двигатели). Основные ракеты, применяемые в космонавтике (ракеты-носители), имеют от 2 до 4 ступеней. Конструктивные схемы этих ракет весьма разнообразны; их отличительная особенность - малая относительная масса конструкции (вместе с двигательной установкой обычно не превышает 10-12% от массы топлива). Создание такой конструкции с высокой жёсткостью и прочностью -сложная техническая задача. Ракета работает в очень напряжённых режимах статич. и динамич. нагрузок, поэтому необходимо макс, использование прочности материалов, конструктивное совершенство отд. узлов при значит, размерах конструкции в целом. В состав оборудования ракеты входит ряд систем и агрегатов для управления в полёте, разделения ступеней, наддува топливных баков, регулирования подачи топлива к двигателям и др. Двигательные установки космич. ракет, как правило, состоят из нескольких двигателей, работа к-рых синхронизируется.

Полёт ракеты по заданной траектории, стабилизацию её относит, центра масс, управление двигателями (регулирование тяги, включение и выключение), выдачу команд на разделение ступеней обеспечивает система управления. Она представляет собой сложный комплекс приборов и агрегатов (гироскопич., электронных, электромеханич. и др.) и в ряде случаев включает бортовую электронную вычислит, машину. Космич. ракеты - одно из крупнейших достижений совр. науки и техники; создание ракетно-космич. комплексов требует высокого уровня развития многих отраслей науки и тех