БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ники - металлургии, химии, радиоэлектроники, вычислит, техники и мн. др.

Отличит. особенность большинства КЛА - способность к длительному самостоят, функционированию в условиях космич. пространства. Во многих отношениях (законы движения, тепловой режим и др.) такие КЛА подобны самостоят, небесным телам, на к-рых созданы необходимые условия для работы аппаратуры и существования людей. На КЛА имеются системы регулирования теплового режима, энергопитания бортовой аппаратуры, управления движением в полёте, радиосвязи с Землёй. В КЛА с экипажем в герметич. кабине обеспечиваются необходимые условия для жизни и работы человека - осуществляется регенерация атмосферы с регулированием её темп-ры и влажности, снабжение водой и пищей. Решение проблем жизнеобеспечения экипажа особенно сложно для обитаемых орбитальных станций и межпланетных кораблей. Многие КЛА имеют системы для ориентации в пространстве. При ориентации КЛА обычно выполняются определённые функции (науч. наблюдения объекта, радиосвязь, освещение солнечных батарей и др.). В зависимости от задачи точность ориентации может составлять от 10-15° до неск. угловых секунд. Изменение траектории (её коррекция, маневрирование КЛА, торможение перед спуском на Землю или др. планету и т. п.) необходимо для реализации любой достаточно сложной схемы космич. полёта. Поэтому все пилотируемые КЛА и большинство автоматич. КЛА снабжены системой управления движением и бортовыми ракетными двигателями. Спе-цифич. задачей является поддержание на борту КЛА требуемой темп-ры. В отличие от наземных условий, в космич, пространстве между отд. телами осуществляется только лучистый теплообмен; на КЛА воздействуют внешние тепловые потоки - излучение Солнца, Земли или др. близкой планеты, обычно переменные (заход КЛА в тень Земли, полёт на различных удалениях от Солнца). В свою очередь, КЛА должен излучать в окружающее пространство определённое количество тепла (зависящее от поглощения внеш. тепловых потоков и внутр. тепловыделения). КЛА обычно имеют радиац. поверхность (часть его оболочки или отд. радиатор-излучатель), к-рая за счёт специальной обработки обладает большим собств. излучением тепла при малом поглощении его извне. Изменяя тепло-подвод к радиац. поверхности и её собств. излучение (напр., с помощью спец. жалюзи), регулируют тепловой баланс КЛА, т. е. его темп-ру. Для тепловых процессов на борту КЛА характерно отсутствие кон-вективного теплообмена в связи с состоянием невесомости в полёте; поэтому одна из функций системы терморегулирования - орг-ция внутр. теплового режима.

Проблема энергопитания бортовой аппаратуры КЛА решается в неск. направлениях: а) использование солнечного излучения, преобразуемого в электроэнергию с помощью солнечных батарей,- способ энергопитания, наиболее широко применяемый на совр. КЛА,- обеспечивает длительность работы аппаратуры до неск. лет; б) установка новых источников тока с высокой энергоотдачей на единицу массы - топливных элементов, вырабатывающих электроэнергию в результате электрохим. процессов между 2 рабочими веществами, напр, кислородом и водородом (полученная при этом вода может использоваться в системах жизнеобеспечения пилотируемых кораблей); в) применение бортовых ядерных энергетич. установок с реакторами и изотопными генераторами. Хим. источники тока (аккумуляторы) применяются только на КЛА с малым временем работы аппаратуры (до 1-3 нед.) или в качестве буферных батарей в системах энергопитания (напр., в сочетании с солнечными батареями).

Полёт автоматич. и пилотируемых КЛА невозможен без радиосвязи с Землёй, передачи на Землю телеметрич. и те-левиз. информации, приёма радиокоманд, периодич. измерений траектории движения КЛА, телефонной и телеграфной связи с космонавтами. Эти функции выполняют бортовые радиосистемы и наземные командно-измерит. пункты (см. Космическая связь).

Одна из наиболее сложных проблем космич. полётов - спуск КЛА на поверхность Земли и др. небесных тел, когда космич. скорость КЛА должна быть уменьшена до нуля в момент посадки. Возможны 2 способа торможения КЛА: использование тормозящей реактивной силы; с помощью аэродинамич. сил, возникающих при движении аппарата в атмосфере. Для реализации 1-го способа КЛА или его часть (спускаемый аппарат) должен быть снабжён тормозной ракетной двигат. установкой и большим запасом топлива; поэтому спуск с ракетным торможением применяется только для посадки на небесные тела, лишённые атмосферы, напр, на Луну. Спуск с аэродинамич. торможением более выгоден в весовом отношении и является основным при осуществлении посадки КЛА на Землю. При спуске по баллистич, траектории перегрузки достигают 8-10; спуск по планирующей траектории, когда на спускаемый аппарат, кроме силы сопротивления, действует и подъёмная сила, позволяет уменьшить эти перегрузки в 1,5-2 раза. На участке спуска при движении в атмосфере имеет место интенсивный аэродинамич. нагрев спускаемого аппарата. Поэтому он снабжается теплозащитным покрытием, создаваемым на основе керамич. или органич. материалов, обладающих высокой термостойкостью, малой теплопроводностью. В конце траектории спуска, на высотах в несколько км, скорость движения снижается до 150-250 м/сек. Дальнейшее снижение скорости перед приземлением осуществляется обычно с помощью парашютной системы. На сов. кораблях «Восход» и «Союз» применялась система мягкой посадки, позволяющая уменьшить скорость приземления практически до нуля.

Конструкция КЛА отличается рядом особенностей, связанных со специфич. факторами космич. пространства - глубоким вакуумом, наличием метеорных частиц, интенсивной радиации, невесомости. В вакууме изменяется характер процессов трения, возникает явление т. н. холодной сварки, что требует подбора соответств. материалов для механизмов, герметизации отд. узлов и др. Воздействие наиболее мелких метеорных частиц на поверхности КЛА при длит. полёте может вызвать изменение оптич. характеристик иллюминаторов, нек-рых приборов, радиац. поверхностей и солнечных батарей, что требует спец. покрытий, особой обработки поверхности и др. Вероятность метеорного пробоя оболочки гермоотсеков совр. КЛА невелика; для больших космич. кораблей и орбитальных станций, совершающих длит, полёт, должна предусматриваться противомете-орная защита. Космич. радиация (потоки заряженных частиц в радиац. поясе Земли и при солнечных вспышках) может влиять на солнечные батареи, детали из органич. соединений и др. элементы КЛА, поэтому в ряде случаев на них наносят защитные покрытия. Особые меры принимаются для защиты космонавтов от всплесков космич. радиации. Высокая надёжность существенна для всех видов КЛА, особенно при наличии экипажа. Она обеспечивается комплексом мероприятий на всех этапах создания и подготовки к полёту КЛА, включая повышение надёжности его элементов, аппаратуры и оборудования, строгий технологич. контроль на всех стадиях изготовления, тщательную отработку систем и агрегатов с имитацией условий космич. полёта, проведение комплексных предполётных испытаний и др. Для повышения надёжности на КЛА применяют дублирование, триплирование, резервирование отд. агрегатов и приборов, а также автоматич. схемы распознавания отказов приборов или их элементов и их замены. См. Космонавтика, Ракета-носитель, Искусственные спутники Земли, Искусственные спутники Луны, Искусственные спутники Марса, Искусственные спутники Солнца, Автоматическая межпланетная станция, Космический корабль, Орбитальная станция.

Лит.: Александров С. Г., Федоров Р„ Е-, Советские спутники и космические корабли, 2 изд.. М.. 1961; Космическая техника, пер. с англ., М., 1964: Справочник по космонавтике, М.. 1966: Пилотируемые космические корабли, пер. с англ., М., 1968; Инженерный справочник по космической технике, М., 1969; Л е-вантовский В. И., Механика космического полета в элементарном изложении, М., 1970; Космонавтика, 2 изд.. М., 1970 (Маленькая энциклопедия); Освоение космического пространства в СССР. Официальные сообщения ТАСС и материалы центральной печати. 1957 - 1967, М.. 1971. К.П.Бушуев.



КОСМИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ, ракетный двигатель, предназначенный для установки на космическом летательном аппарате.

КОСМИЧЕСКОГО ПОЛЁТА ИМИТАЦИЯ, создание (воспроизведение) на Земле условий, близких к условиям космич. пространства и космич. полёта. В таких условиях проводят испытания материалов и оборудования, проверяют правильность их подбора и расчёта и определяют их пригодность для работы в космосе, а также для тренировки людей, к-рые будут участвовать в космич. полёте. Имитируют условия космич. полёта для испытаний элементов конструкций ракет-носителей (верхних ступеней), космич. аппаратов (спутников и пилотируемых космич. кораблей), ракетных двигателей, радиотехнич. оборудования (антенн и др.) и др. исследований.

Камеры для имитации космич. условий обычно наз. имитаторами. Имитаторы различного типа позволяют с определённой степенью точности воспроизводить отд. параметры космич. пространства. Это установки для имитации условий др. планет (напр., Марса и Венеры); для изучения проблемы космического полёта человека и функционирования системы человек - машина, в частности для отработки операций на орбитальных станциях, а также проведения ремонта оборудования и спасения в аварийных ситуациях; для воспроизведения факторов, воздействующих на ракеты-носители на участке выведения (шум в сочетании с вибрацией, перегрузками и высокой темп-рой), и др. К имитаторам относится, напр., барокамера, в к-рой испытывают целые космич. корабли. Испытания электронного и механич. оборудования проводят в центрифугах. «Водородную пушку» используют для создания условий вхождения космич. аппаратов в атмосферу Земли и нек-рых др. планет. «Пушка» представляет собой аэродинамическую трубу, в к-рой поток водорода со скоростью 48 000 км/ч обтекает космич. корабль. В ней, в частности, проводят изучение влияния на различные материалы бомбардировки микрометеорных частиц. В больших установках используют вычислит, машины (ЭВМ) для автома-тич. управления процессом испытаний по заданной программе, автоматизируют запись, хранение и обработку информации, полученной в ходе испытаний. Существуют барокамеры для испытаний космич. оборудования в условиях комбинированного воздействия различных факторов космич. полёта (солнечной радиации, вакуума, перепада темп-р и т. д.). Однако нет такого устройства, в к-ром можно было бы полностью имитировать сразу все условия космич.полёта.Практически невозможно построить барокамеру большого объёма, создав в ней характерное для космоса разрежение до 10-14н/м2 (~10-16 мм рт. ст.). В таких больших камерах удаётся создавать давление 10-4н/м2 (10-6 мм рт.ст.), что соответствует разрежению на высоте ок. 330 км над Землёй. Такие условия вполне достаточны для испытания большинства узлов ракет-носителей и космич. аппаратов. Для этого воздух откачивают последовательно ступенями или покаскадно, применяя парортутные или паромасляные диффузионные и криогенные вакуумные насосы. Кроме низкого давления, в барокамерах имитируют также освещённость и темп-ру в космосе. Солнечное излучение имитируют ртутными, ксено-новыми или дуговыми угольными лампами, к-рые обычно устанавливают вне камеры. Свет и тепло от этих источников системой отражателей направляются на кварцевые окна камеры, а затем через систему зеркал и линз, находящуюся уже внутри камеры, фокусируются и направляются на испытываемый объект. Для имитации низких темп-р (до -200 °С) стенки камеры имеют панели или змеевики, охлаждаемые протекающим по ним жидким азотом.

Человека, участвующего в космич. полёте, необходимо защитить от опасного воздействия вакуума, невесомости, метеорной пыли и различных излучений, меняющихся в широком диапазоне. Камеры для испытаний космич. корабля, предназначенного для полёта с человеком на борту, имеют аналогичную конструкцию и работают так же, как и камеры для испытаний материалов и оборудования, но в них предусмотрена быстрая разгерметизация в случае аварийной ситуации. Напр., при подготовке полёта человека на Луну в США были созданы спец. барокамеры. В барокамере из нержавеющей стали, имеющей высоту 36,5 м и диаметр 19,7 м, испытывали космич. корабли «Аполлон». Дуговые лампы в потолке и стены с криогенным охлаждением позволяют создавать в каме