БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ождествлено с галактиками. Осн. часть неотождествлённых источников, по-видимому, связана с галактиками и квазарами.

Наша Галактика также является источником К. р.: в полосе Млечного Пути наблюдаются места с повышенной интенсивностью К. р. Большинство метагалак-тич. источников К. р. значительно мощнее Галактики. В то время как Галактика излучает примерно 1038 эрг/сек (ок. 10-6 её полного излучения в оптич. диапазоне), отдельные метагалактич. источники излучают до 1045эрг/сек, что близко к мощности их оптич. излучения. Такие объекты, наз. радиогалактиками, представляют собой, как правило, гигантские сфероидальные весьма массивные звёздные системы. Интерференц. наблюдения показывают, что области оптич. излучения и радиоизлучения метагалактич. объектов не совпадают в пространстве: обычно последние локализуются в двух симметрично расположенных по отношению к оптич. центру облаках, удалённых от этого центра на расстояние в десятки тысяч парсек. В ряде случаев в оптич. центре радиогалактики наблюдается источник весьма малых угловых размеров («1"), поток радиоизлучения от к-рого довольно быстро меняется со временем. Это свидетельствует о продолжающейся активности галактич. ядер, выбрасывающих вещество, из к-рого образуются радио-излучающие облака. Теория излучения радиоисточников была предложена (1950) швед, учёными X. Альфвеном и Н. Гер-лофсоном и подробно разрабатывалась сов. учёными В. Л. Гинзбургом и И. С. Шкловским. Согласно этой теории, многочисленные предсказания к-рой были полностью подтверждены последующими наблюдениями, К. р. возникает при движении быстрых, т. н. релятивистских электронов в магнитных полях (синхро-тронное излучение). Применение этой теории к конкретным метагалактич. источникам показывает, что в них содержится гигантское количество релятивистских частиц, суммарная энергия к-рых доходит до 1060эрг, что сравнимо с энергией гравитац. связи галактики. Эти частицы генерируются в области галактических ядер и выбрасываются оттуда во время взрывов.

В 1965 в США на сантиметровом диапазоне было обнаружено т. н. «реликтовое» излучение метагалактич. фона. Оно характеризуется планковским спектром с темп-рой ок. 3 К. Своё название оно получило потому, что его кванты были излучены Вселенной на ранней стадии её развития. Тогда ещё не было ни галактик, ни звёзд. Вселенная в эту эпоху представляла собой водородную плазму с температурой 4000 °С.

Наряду с метагалактич. источниками наблюдаются также галактич. источники К. р. Это - преимущественно особые туманности - остатки вспышек сверхновых звёзд (напр., Крабовидная туманность). Излучение в этом случае так же является синхротронным. Кроме того, В Галактике (а также в ближайших галактиках, напр, в Магеллановых Облаках) наблюдаются источники теплового радио^ излучения. Последними являются межзвёздные облака ионизованного газа и обычные туманности галактические. Спектр этого излучения отличен от син-хротронного, «тепловые» источники наблюдаются преим. на сравнительно коротких волнах. В 1967 Дж. Белл и др. (Великобритания) обнаружили совершенно новый тип радиоисточников, получивших назв. пульсары. Вскоре выяснилось, что пульсары - это сильно намагниченные, быстро вращающиеся нейтронные звёзды, образовавшиеся после взрывов сверхновых звёзд. Все упоминавшиеся выше источники К. р. характеризуются непрерывным спектром. Наряду с этим в ряде случаев наблюдаются отдельные спектральные радиолинии, причём как в излучении, так и в поглощении. Наиболее важной из них является линия водорода с длиной волны 21 см. Существование этой линии впервые было теоретически предсказано голл. учёным X. ван де Холстом в 1944. Она была открыта в 1951 (амер. астрономами X. Юэном, Э. Перселлом), и её наблюдения стали неиссякаемым источником сведений для различных астрономич. исследований. В 1949 Шкловский предсказал новый класс межзвёздных молекулярных линий, в частности линию ОН с длиной волны 18 см. Эта линия открыта только в 1963. В 1966 на этой волне открыты источники радиоизлучения нового типа с огромной яркостью. Излучение таких источников имеет мазерную природу (см. Мазер). Вскоре были открыты ещё более интенсивные мазерные космич. источники на волне 1,35 см в линии паров воды. В наст, время (70-е гг. 20 в.) средствами радиоастрономии обнаружено св. 10 межзвёздных молекул, в т. ч. таких многоатомных, как аммиак, спирт и муравьиная кислота. В 1962 сов. астроном Н. С. Кардашев обосновал возможность наблюдений в радиодиапазоне линий высоковозбуждённых атомов межзвёздного водорода, к-рые вскоре были открыты. Наблюдения этих линий весьма полезны при анализе физ. условий в межзвёздной среде.

В конце 60-х гг. были получены первые результаты наблюдений сверхдлинноволнового (длины волн порядка километров) К. р. с искусств, спутников Земли, а также субмиллиметрового К. р. Расширение спектрального диапазона ещё больше увеличивает возможности радиоастрономии.

Лит.: Каплан С. А., Элементарная радиоастрономия, М., 1966; Кraus J. D., Radio astronomy, N. ?.-[а. о.], 1966.

И.С. Шкловский.



КОСМОВИДЕНИЕ, космическое телевидение, непосредственная передача и приём по сети телевиз. вещания изображений с борта космич. аппарата, находящегося в космич. пространстве или на поверхности др. планеты. Радиосигналы изображений, посланные бортовой аппаратурой космич. станции, принимаются земной станцией радиосвязи и затем передаются на телецентр, откуда ретранслируются по сетям телевидения СССР, стран Европы и Америки. Начало К. положено передачей телевиз. изображений лётчиков-космонавтов А. Г. Николаева и П. Р. Поповича с борта космич. кораблей «Восток-3» и «Восток-4» в авг.

1962. Наибольшая дальность К. достигнута в дек. 1968 при передаче изображения во время облёта Луны космическим кораблём «Аполлон-8» с космонавтами Ф. Борманом, Дж. Ловеллом и У. Андерсом на борту.

КОСМОГОНИЯ(греч. kosmogonia, от kosmos -мир, Вселенная и gone, goneia- рождение), область науки, в к-рой изучается происхождение и развитие космич. тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел - Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов. Изучение космогонич. процессов является одной из гл. задач астрофизики. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще. В совр. К. широко используются законы физики и химии.

Космогонич. гипотезы 18-19 вв. относились гл. обр. к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретич. астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа к-рых была выяснена только в 20-х гг.

Процессы формирования и развития большинства космич. тел и их систем протекают чрезвычайно медленно и занимают миллионы и миллиарды лет. Однако наблюдаются и быстрые изменения, вплоть до процессов взрывного характера. При изучении К. звёзд и галактик можно использовать результаты наблюдений многих сходных объектов, возникших в разное время и находящихся на разных стадиях развития. Однако, изучая К. Солнечной системы, приходится опираться только на данные о её структуре и о строении и составе образующих её тел.



Очерк истории космогонических исследований. После общих идей о развитии небесных тел, высказанных ещё греч. философами 4-1 вв. до н. э. (Левкипп, Демокрит, Лукреций), наступил многовековой период господства теологии. Лишь в 17 в. Р. Декарт отбросил миф о сотворении мира и нарисовал картину образования всех небесных тел в результате вихревого движения мельчайших частиц материи. Фундамент науч. планетной К. заложил И. Ньютон, к-рый обратил внимание на закономерности движения планет. Открыв осн. законы механики и закон всемирного тяготения, он пришёл к выводу, что устройство планетной системы не может быть результатом случайного стечения обстоятельств. В 1745 Ж. Бюффон высказал гипотезу, что планеты возникли из сгустков солнечного вещества, исторгнутых из Солнца ударом огромной кометы (в то время кометы считались массивными телами). В 1755 И. Кант опубликовал книгу «Всеобщая естественная история и теория неба...», в к-рой впервые дал космогонич. объяснение закономерностям движения планет (см. Канта гипотеза). В кон. 18 в. В. Гершель, наблюдая небо в построенные им большие телескопы, открыл туманности овальной формы, обладающие различными степенями сгущения к центральному яркому ядру. Возникла гипотеза об образовании звёзд из туманностей путём их «сгущения». Опираясь на эти наблюдения Гершеля и на закономерности движения планет, П. Лаплас выдвинул гипотезу о происхождении Солнечной системы (см. Лапласа гипотеза), во многом сходную с гипотезой Канта. (Когда интересуются гл. обр. идеей ес-теств. образования Солнечной системы из протяжённой рассеянной среды, часто говорят о единой гипотезе Канта - Лапласа.) Гипотеза Лапласа быстро завоевала признание и благодаря ей астрономия оказалась в числе наук, первыми внёсших идею развития в совр. естествознание. Однако на протяжении 19 в. в гипотезе Лапласа выявлялись всё новые и новые трудности, преодолеть к-рые в то время не удалось. В частности, не удалось объяснить, почему совр. Солнце вращается очень медленно, хотя ранее, во время своего сжатия, оно вращалось столь быстро, что происходило отделение вещества под действием центробежной силы.

В кон. 19 в. появилась гипотеза амер. учёных Ф. Мультона и Т. Чемберлина, предполагавшая образование планет из мелких твёрдых частиц, названных ими «планетезималями». Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путём застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в пла-нетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет. В 20-30-х гг. 20 в. широкой известностью пользовалась гипотеза Дж. Джинса, считавшего, что планеты образовались из раскалённого вещества, вырванного из Солнца притяжением пролетевшей поблизости массивной звезды (см. Джинса гипотеза).

Идея об образовании звёзд путём сгущения рассеянного туманного вещества сохранилась до нашего времени и разделяется большинством исследователей. После открытия механического эквивалента тепла была подсчитана энергия, освобождающаяся при сжатии звезды (Г. Гельмгольц, 1854; У. Томсон, 1862). Оказалось, что её хватило бы для поддержания излучения Солнца в течение 107 - 108 лет. В то время такой срок казался достаточным. Но позже изучение истории Земли показало, что Солнце излучает несравненно дольше. В нач. 20 в. проблему источников энергии звёзд безуспешно пытались решить с помощью радиоактивных элементов, в то время лишь недавно открытых. Установление взаимосвязи массы и энергии, показавшее, что звёзды, излучая, теряют массу, привело к гипотезам о возможности аннигиляции вещества в недрах звёзд, т. е. превращения вещества в излучение. В этом случае превращение массивных звёзд в звёзды малой массы длилось бы 1013-1015 лет. Правильной оказалась гипотеза о трансмутации элементов, т. е. об образовании более сложных атомных ядер из простых, в первую очередь - гелия из водорода. В 1938-39 были выяснены конкретные ядерные реакции, могущие обеспечить излучение звёзд [К. Вейцзеккер (Германия), X. Бете], и это явилось началом совр. этапа развития звёздной К.

В разработке К. галактик делаются лишь первые шаги. Проводится классификация галактик и их скоплений. Изучаются эволюц. изменения звёзд и газовой составляющей галактик, их хим. состава и др. параметров. Изучается природа начальных возмущений, развитие к-рых привело к распаду расширяющегося газа Метагалактики на отд. сгущения. Рассчитывается, как зависят морфологический тип и др. свойства галактик от массы и вращения этих первичных сгущений. Большое внимание привлекают компактные плотные ядра, имеющиеся у ряда галактик. Изучается природа мощного радиоизлучения, к-рым обладают нек-рые галактики, и связь его с взрывными процессами в ядрах. Мощные взрывы, происходящие в квазар