БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ах и ядрах активных галактик - сейфертовских, N-ra-лактик и др.,- представляют собой существ, этапы эволюции галактик. К. развивается, опираясь на большое количество фактов, охватывающих самые различные свойства небесных тел.



Планетная космогония. При выяснении вопроса, в каком состоянии находилось ранее вещество, ныне образующее планеты, важную роль играют закономерности движения планет - их обращение вокруг Солнца в одном направлении по почти круговым орбитам, лежащим почти в одной плоскости, - и деление планет на 2 группы, отличающиеся по массе и составу,- группу близких к Солнцу планет земного типа и группу далёких от Солнца планет-гигантов. При выяснении вопроса о том, откуда взялось около Солнца допланетное вещество, важную роль играет проблема распределения момента количества движения (МКД) между Солнцем и планетами: почему всего 2% общего МКД всей Солнечной системы заключено в осевом вращении Солнца, а 98% приходится на орбитальное движение планет, суммарная масса которых в 750 раз меньше массы Солнца?

В 40-х гг. 20 в., после крушения гипотезы Джинса, планетная К. вернулась к классич. идеям Канта и Лапласа об образовании планет из рассеянного вещества (см. Шмидта гипотеза). В наст, время (70-е гг. 20 в.) является общепризнанным, что большинство планет аккумулировалось из твёрдого, а Юпитер и Сатурн также и из газового вещества. По-видимому, существовавшее вблизи экваториальной плоскости Солнца газо-во-пы левое облако простиралось до современных границ Солнечной системы.

Исходя из господствующих представлений об образовании Солнца из сжимающейся и вращающейся туманности, большинство астрономов считает, что прото-планетное облако той или иной массы отделилось под действием центробежной силы от этой туманности на заключит, стадии её сжатия [Ф. Хойл (Великобритания), А. Камерон (США), Э. Шацман (Франция)]. Но, в отличие от Лапласа, рассматривавшего это отделение чисто механически, сейчас учитываются эффекты, связанные с наличием магнитного поля и корпускулярного излучения Солнца. Именно это позволило объяснить распределение МКД между Солнцем и планетами в рамках гипотез о совместном образовании Солнца и протопланетного облака. Наряду с этими гипотезами высказывались гипотезы о захвате вещества уже сформировавшимся Солнцем (О. Ю. Шмидт, X. Алъфвен).

Если протопланетное облако было первоначально горячим и состояло только из газов, то твёрдые пылинки образовались в ходе его охлаждения. Сначала к онденсировались наименее летучие вещества, в т. ч. силикаты и железо, а затем - всё более и более летучие. Внутр. зона протопланетного облака прогревалась Солнцем и там могли образоваться только нелетучие, в основном каменистые пылинки, тогда как в холодной внешней зоне конденсировались также и летучие вещества. Хотя присутствие пыли делало облако непрозрачным, что способствовало очень низкой темп-ре внешней зоны, наиболее летучие вещества - водород и гелий - не могли конденсироваться даже там.

Если же протопланетное облако первоначально было холодным и пылинки состояли в основном из летучих веществ, то они могли сохраниться во внеш. холодной зоне облака, тогда как во внутр. зоне летучие вещества испарялись, оставляя лишь небольшие каменистые остатки.

В космич. (солнечном) веществе летучих веществ много больше, чем нелетучих. Поэтому должно было возникнуть огромное различие не только в составе, но и в общем количестве пылевого вещества во внутр. и внеш. зонах. В дальнейшем эти зональные различия привели к различиям в составе и массах планет земной группы и планет-гигантов.

Протекание процесса конденсации (или испарения) пылинок в зоне астероидов пытаются обнаружить путём тщат. анализа метеоритов, к-рые являются обломками астероидов и в нек-рых случаях могут служить образцами допланетного вещества, мало изменившихся при последующих процессах. Нек-рые исследователи видят в результатах такого анализа указания на то, что конденсация пылинок и их аккумуляция в крупные тела протекали параллельно. Однако это не удаётся согласовать с результатами теоре-тич. расчётов, указывающими на то, что длительность аккумуляции должна была в сотни или тысячи раз превосходить длительность остывания и конденсации.

Образование планет из протопланетного облака наиболее полно исследовано О. Ю. Шмидтом и его сотрудниками и сторонниками. Процесс можно условно разделить на 2 этапа. На первом этапе длившемся, вероятно, менее 10s лет из пылевой компоненты облака образовалось множество «промежуточных» тел размером в сотни км. На втором этапе длительностью ок. Ю8 лет из роя «промежуточных» тел и их обломков аккумулировались планеты. (У наиболее далёких планет - Урана, Нептуна и Плутона, вещество к-рых было рассеяно по огромным кольцевым зонам, второй этап мог длиться ок. Ю9 лет.) Самые крупные планеты - Юпитер и Сатурн - на основной стадии аккумуляции вбирали в себя не только твёрдые тела, но и газы.

Разные гипотетич. варианты процесса образования облака ведут к разным вариантам протекания первого этапа. «Промежуточные» тела должны были образоваться либо в результате собирания пыли в тонкий диск и распада этого диска на сгущения, либо в результате коагуляции пылинок, т. е. их «слипания».

Протекание аккумуляции планет из роя «промежуточных» тел практически не зависит от механизма их образования. Сперва они двигались по круговым орбитам в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное вещество - остатки «первичной» пы ли и обломки, образовавшиеся, когда «промежуточные» тела сталкивались с большими относит, скоростями. Гравитац. взаимодействие «промежуточных» тел, усиливающееся по мере их роста, постепенно изменяло их орбиты, увеличивая средний эксцентриситет и средний наклон к центральной плоскости. Те из «промежуточных» тел, к-рые вырвались вперёд в процессе роста, оказались зародышами будущих планет. При объединении многих тел в планеты произошло усреднение индивидуальных свойств движения отд. объединяющихся тел, и потому орбиты планет получились почти круговыми и компланарными. Анализ процесса аккумуляции планет из роя твёрдых тел позволил О. Ю. Шмидту указать путь к объяснению происхождения прямого вращения планет и закона планетных расстояний .

Рост планет земной группы прекратился тогда, когда они вобрали в себя практически всё твёрдое вещество, имевшееся в районе их орбит (только у Марса часть вещества из его «зоны питания», вероятно, была поглощена массивным Юпитером). Но у планет-гигантов рост прекратился тогда, когда они действием своего притяжения выбросили из зоны своего формирования все «промежуточные» тела и их обломки, а также газы (в рассеянии последних важную роль могло сыграть интенсивное корпускулярное излучение молодого Солнца).

Неупругие столкновения тел, происходившие в окрестностях растущих планет, приводили к тому, что часть тел переходила на спутниковые орбиты. В результате вокруг планет возникали рои твёрдых тел и частиц. Из них аккумулировались спутники планет. Луна, вероятно, аккумулировалась из околоземного роя на расстоянии ок. 10 земных радиусов, а затем отодвинулась на совр. расстояние от Земли в результате приливного взаимодействия с Землёй. Существуют и др. гипотезы происхождения Луны: гипотеза Дж. Дарвина, согласно к-рой Луна отделилась от Земли, и гипотеза о захвате Землёй Луны, образовавшейся на орбите, близкой к земной. Радиус орбиты Луны после захвата был мал, а потом увеличился, как и в упомянутой выше гипотезе. Возможность плавного отделения Луны от Земли, предполагавшаяся Дарвином, опровергнута работами А. М. Ляпунова и Э. Картона. У Юпитера и Сатурна из околопланетных роёв аккумулировались системы спутников, движущихся в направлении вращения планет по круговым орбитам, лежащим в экваториальной плоскости планеты. Эти системы спутников подобны Солнечной системе. Те спутники Юпитера, Сатурна и Нептуна, к-рые обладают обратным движением, были, вероятно, захвачены из числа «промежуточных» тел. Остатками этих тел и их обломков являются совр. астероиды (каменистые тела внутр. зоны) и ядра комет (ледяные тела внеш. зоны). Столкновения астероидов друг с другом ведут к их дроблению. Как показывает изучение метеоритов, структура нек-рых из них изменена под действием высокого давления (до сотен килобар), возникающего при столкновениях. Содержание в метеоритах короткоживущих изотопов, возникающих под действием космических лучей, показывает, что дробления, породившие эти метеориты, произошли 107- 108 лет назад. Ледяные ядра комет образуют облако вокруг планетной системы, простирающееся до 100-150 тыс. а. е. от Солнца. Там при низкой температуре льды сохраняются неограниченно долго. Под действием звёздных, а потом и планетных возмущений отдельные ядра переходят на меньшие орбиты и превращаются в короткопериодич. кометы. Часто приближаясь к Солнцу, они испаряются и разрушаются за неск. десятков или сотен оборотов. Измерения радиоактивных изотопов и продуктов их распада показывают, что возрасты древнейших метеоритов составляют 4,7 млрд. лет. Поскольку астероиды, являющиеся родительными телами метеоритов, быстро аккумулировались в самом начале образования Солнечной системы, этот возраст принимается за возраст всей Солнечной системы. Измерение возраста лунных образцов показывает, что Луна образовалась в ту же эпоху, что и Земля. Излияния тёмных лав, заполнивших впадины лунных «морей», произошли на миллиард лет позже (3,1-3,6 млрд. лет назад).

При аккумуляции планет происходил их разогрев, но у планет земной группы средняя темп-pa поверхности определялась в основном нагревом от Солнца с влиянием парникового эффекта. Из более глубоких слоев тепло выходит медленно. Достаточно было остатка в 3-4%, чтобы нагреть недра Земли и Венеры до 1000- 1500 °С, а недра планет-гигантов до десятков тысяч градусов. Начальный разогрев Земли и Луны был связан как с выделением гравитац. энергии при их сжатии, так, вероятно, и с приливными деформациями этих двух первоначально близких тел. Дальнейшая эволюция их и др. планет земной группы определялась в основном накоплением тепла, выделившегося при медленном распаде радиоактивных элементов - урана, тория и др.,- имеющихся в ничтожно малых количествах во всех горных породах. Разогрев и частичное расплавление недр этих планет привело к выплавлению коры и выделению газов и паров. Последние у планет малой массы (Меркурий, Марс, Луна) полностью или в значит, мере рассеялись в пространство, а у более массивных планет в основном сохранились, образовав атмосферу и гидросферу (Земля) либо только атмосферу (Венера).

Лит.: Вопросы космогонии, т. 1 - 10, М., 1952-64; Шмидт О. Ю., Четыре лекции о теории происхождения Земли, 3 изд., М., 1957; Л е в и н Б. Ю., Происхождение Земли, «Изв. АН СССР. Физика Земли», 1972, № 7; Сафронов В. С., Эволюция допланетного облака и образование Земли и планет, М., 1969; Symposium of the origine of the Solar system, Niece, april 1972, P., 1972. Б.Ю.Левин.



Звёздная космогония. Проблемы происхождения и эволюции звёзд, а также звёздных систем изучаются в разделе К., наз. звёздной К. В ходе эволюции звезда проходит стадии, к-рые определяются изменениями условий механич. и теплового равновесия в её недрах (см. Звёзды). В результате ядерных реакций превращения водорода в гелий (к-рые служат источником энергии звёзд главной последовательности на Герцшпрунга - Рессел-ла диаграмме и части звёзд-гигантов) постепенно изменяется хим. состав ядра звезды, причём ср. молекулярный вес газа увеличивается, ядро уплотняется и разогревается. Исследования показывают, что это сопровождается увеличением светимости и радиуса звезды. На диаграмме Герцшпрунга - Ресселла звезда, в начале эволюции располагавшаяся на гл. после довательности, приподнимается над ней. По мере дальнейшего выгорания водорода у звёзд малой массы образуется ядро с плотностью, в сотни тыс. раз большей плотности воды, и темп-рой св. 107 К. Газ при такой плотности оказывается вырожденным (см. Вырожденный газ). В ядре звезды водорода уже нет, вследствие чего ядерные реакции идут только в оболочке ядра, где темп-pa достаточно высока и имеется водород. Звезда вздувается, на этой стадии её радиус в десятки раз больш