БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

е, чем тот, к-рый звезда имела на гл. последовательности; светимость также сильно увеличивается, и звезда превращается в гиганта. Точка, соответствующая звезде на диаграмме Герцшпрунга - Ресселла, вследствие эволюции звезды перемещается вправо вверх. Постепенно оболочка, расширяясь, становится прозрачной, и сквозь неё видно горячее ядро. Ультрафиолетовое излучение ядра заставляет газ оболочки светиться, из звезды-гиганта образуется планетарная туманность. После остывания ядра звезда превращается в белый карлик, к-рый не имеет источников энергии и медленно остывает в течение миллиардов лет.

У звёзд, имеющих на начальной стадии неск. большую массу, эволюц. изменения протекают иначе. У таких звёзд темп-ра ядра повышается до 120-140 млн.градусов и начинается реакция превращения гелия в углерод; при ещё более высоких темп-pax синтезируются и более тяжёлые ядра. Вследствие мощного выделения энергии ядро звезды расширяется. Соответствующая точка на диаграмме Герцшпрунга - Ресселла сложным образом движется между ветвью гигантов и левой частью гл. последовательности. Сбросив ок. половины массы, звезда также превращается в белый карлик.

Ещё более массивные звёзды (до 2 масс Солнца) скачком переходят от гл. последовательности в область красных сверхгигантов. В их ядрах образуются всё более тяжёлые элементы, вплоть до наиболее плотно упакованного ядра атома железа. При дальнейшем повышении темп-ры ядра железа превращаются в ядра др. элементов, но при этом энергия уже не выделяется, а поглощается, и ядро звезды не нагревается при сжатии. Давление вырожденного газа не может уравновесить вес ядра, если его масса больше 1,4 массы Солнца, и оно продолжает сжиматься до тех пор, пока плотность вещества в нём не будет того же порядка, что и плотность атомных ядер. В это время под действием огромного давления электроны объединяются с ядрами, образуя нейтроны. Такими нейтронными звёздами, имеющими радиус ок. 10 км, являются пульсары. Часть гравитац. энергии, выделяющейся при сжатии, передаётся оболочке, к-рая выбрасывается со скоростью неск. тыс. км/сек: происходит вспышка сверхновой звезды II типа. Сверхновые звёзды I типа образуются в конце эволюции звёзд меньшей массы.

Если масса ядра звезды превышает 2 массы Солнца, то сжатие не останавливается даже при ядерной плотности и происходит с увеличивающейся скоростью. Когда скорость падения вещества к центру звезды приближается к скорости света, звезда, в силу эффектов теории относительности, как бы застывает, перестаёт излучать (см. Коллапс гравитационный). Обнаружить такую коллап-сировавшую звезду можно только по её гравитации или по излучению падающего на неё газа. Время эволюции звёзд существенно зависит от их массы. Для Солнца оно составляет Ю10 лет, для звёзд спектр, класса О - неск. млн. лет (у таких звёзд запасы водорода быстро истощаются). Поэтому все наблюдаемые горячие звёзды - молодые, недавно образовавшиеся. Концентрация молодых звёзд в скопления и ассоциации показывает, что звёзды образуются группами. Связь этих групп с межзвёздной средой, в частности с тёмной полосой сжатого газа на кромке спиральных ветвей, и ряд др. фактов привели к представлению, что звёзды формируются при сжатии и дроблении больших газово-пылевых облаков на отд. сгустки, к-рые продолжают сжиматься под действием собств. тяготения.

На начальной стадии эволюции (до момента прихода на гл. последовательность диаграммы Герцшпрунга - Ресселла) звезда светит за счёт энергии гравитац. сжатия. В это время точки, соответствующие звёздам, находятся на диаграмме выше и правее своего будущего положения на гл. последовательности. Типичными представителями молодых звёзд средней массы, ещё не вполне сжавшимися, являются звёзды типа Т Тельца. Звёзды очень малой массы сжимаются миллиарды лет; представителями таких сжимающихся звёзд являются вспыхивающие звёзды типа UV Кита.

При образовании звёзд большую роль играет магнитное поле. Под действием сил гравитации межзвёздный газ скользит вдоль силовых линий, собирается с большого расстояния в плотные комплексы. Когда масса комплекса становится достаточно большой, он сжимается и поперёк силовых линий. При сжатии комплекса его вращение ускоряется. Дальнейшее сжатие становится возможным только при условии передачи части МКД окружающему газу. Это осуществляется вследствие закручивания силовых линий, натяжение к-рых передаёт вращение во внеш. среду.



Галактическая космогония. Звёзды разных типов составляют в Галактике определённые подсистемы, к-рые образовались на различных стадиях формирования Галактики (см. Звёздные подсистемы). Сначала Галактика была протяжённым медленно вращающимся газовым облаком. Газ сжимался к центру; в процессе этого сжатия из него формировались звёздные скопления, большая часть к-рых позже рассеялась. Звёзды, образовавшиеся в это время, движутся по очень вытянутым орбитам и заполняют слабо сплюснутый сфероид - тот объём, в к-ром ранее был газ. Эти звёзды входят в звёздные подсистемы, относящиеся к сферич. составляющей Галактики. В отличие от звёзд, к-рые движутся практически без трения, газ теряет кинетич. энергию хаотических движений и сжимается. Радиус сфероида уменьшается, он ускоряет своё вращение, пока центробежная сила не уравновесит тяготение на экваторе. После этого сжатие происходит гл. обр. к экваториальной плоскости. На этой стадии образовались подсистемы, относящиеся к промежуточной составляющей Галактики. После образования подсистем плоской составляющей газ уже не сжимался; он удерживался не столько движениями, сколько давлением магнитного поля. Звёзды, образовавшиеся из газа на этой стадии, входят в подсистемы плоской составляю щей. Горячие звёзды и скопления, в состав к-рых они входят,- молодые, они входят также в плоскую составляющую. В других составляющих Галактики массивных звёзд нет, их эволюция уже закончилась. Различаются и скопления в разных составляющих. В плоских они содержат по нескольку сотен или тысяч звёзд и называются рассеянными, в сферических - десятки и сотни тысяч звёзд и называются по их виду шаровыми скоплениями. В плоских составляющих звёзды движутся в среднем по орбитам, близким к круговым, и колеблются относительно галактич. плоскости. В промежуточных они движутся по более вытянутым орбитам, а в сферич. составляющих плоскости вытянутых орбит ориентированы почти хаотически. Чем толще подсистема, тем больше дисперсия скоростей звёзд перпендикулярно плоскости.

Помимо возрастных и кинематических различий, подсистемы различаются и по хим. составу звёзд. В подсистемах промежуточных составляющих содержание тяжёлых элементов по отношению к водороду и гелию в несколько раз меньше, чем в плоских, а в сферических оно меньше в десятки и даже сотни раз, причём чем старше группа звёзд и чем больше её среднее расстояние от плоскости, тем меньше содержание тяжёлых элементов. Эта особенность объясняется тем, что тяжёлые элементы образуются внутри звёзд при ядерных реакциях и при взрывах сверхновых. Вместе с оболочками сиерхновых и со звёздным ветром тяжёлые элементы попадают в межзвёздную среду, и следующее поколение звёзд образуется из газа, уже обогащённого этими элементами. Гелий тоже образуется при ядерных реакциях, но осн. часть его образовалась, по-видимому, на дозвёзд-ной стадии эволюции Вселенной. Различие хим. состава влияет на спектр и на внутр. строение звёзд. В частности, субкарлики - это тоже звёзды гл. последовательности, но в сферич. и промежуточных подсистемах они не совпадают с главной последовательностью из-за отличия хим. состава, искажающего их цвет.

Звёзды и межзвёздная среда представляют собой 2 фазы эволюции вещества галактик. Со временем межзвёздная среда истощится, в Галактике исчезнут молодые звёзды, большая часть массы будет сосредоточена в звёздах малой массы, к-рые эволюционируют медленно, а также в остатках звёзд: в белых карликах, нейтронных звёздах и более массивных остатках, находящихся в состоянии коллапса.

В изложенной концепции существенно, что как сами звёзды, так и галактики образовывались в результате конденсации первоначально диффузного газа. Эта концепция вытекает из огромного количества фактов, в частности из упомянутого различия подсистем. Действительно, более молодые звёзды включают в большом количестве те элементы, к-рые рассеиваются в межзвёздной среде при взрывах сверхновых. Форма подсистем разных возрастов показывает, что вещество, из к-рого образовались звёзды, уплощалось; но уплощаться может только диффузная среда, т. к. плотные тела движутся почти без трения. С помощью радио-астрономич. наблюдений были обнаружены компактные области, окружённые плотным холодным газом. Это явление может быть интерпретировано как резуль тат образования горячей звезды в центре холодного плотного сгустка.

В. А. Амбарцумян выдвинул другую космогонич. концепцию, основанную на том факте, что в объектах самых разных масштабов - от звёзд-карликов до ядер галактик - наблюдаются взрывы, проявления нестационарности, а также на предполагаемом распаде нек-рых звёздных систем и скоплений галактик. Согласно этой концепции, в ядрах галактик содержится сверхплотное чдозвёздное» вещество, к-рое и служит материалом для образования галактик. Входящие в состав галактик звёздные ассоциации также образуются из «осколков» этого вещества; наблюдаемые на поверхности звёзд-карликов взрывы объясняются также распадом чдозвёздного» вещества. Скопления галактик также предполагаются относительно молодыми (в астрономическом смысле этого слова), образовавшимися из чдозвёздного» вещества. Свойства чдозвёздного» вещества ещё неизвестны. Однако в концепции В. А. Амбарцумяна предполагается, что для этого вещества фундаментальные законы совр. физики могут оказаться несправедливыми.

Лит.: Шварцшильд М., Строение и эволюция звезд, пер. с англ., М., 1961; Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959 Кап дан С. А., Физика звезд, 2 изд. М-, 1970; Проблемы современной космогонии под ред. В. А. Амбарцумяна, 2 изд., М. 1972. С. Б. Пикелънер



КОСМОДЕМЬЯНСКАЯ Зоя Анатольевна (Таня) (13.9.1923, с. Осиновые Гаи Тамбовской обл.,-29.11.1941, дер. Петри-щево Верейского р-на Моск. обл.), советская партизанка, героиня Великой Отечеств, войны 1941-45. Род. в семье служащего. Чл. ВЛ КСМ с 1938. Училась в 201-й ср. школе Москвы. В окт. 1941, будучи ученицей 10-го класса, добровольцем ушла в партизанский отряд. У дер. Обухове, близ Наро-Фоминска, с группой комсом ольцев - партизан перешла через линию фронта на занятую нем. оккупантам и территорию. В кон. нояб. 1941 в дер. Петрищево при выполнениибоевого задания была схвачена фашистами. Несмотря на чудовищные пытки и издевательства палачей, не выдала товарищей, не открыла своего настоящего имени, назвавшись Таней. 29 нояб. 1941 была казнена. 16 февр. 1942 К. посмертно присвоено звание Героя Сов. Союза. Преданность социалистич. Родине, верность делу коммунизма сделали имя воспитанницы Ленинского комсомола легендарным. К. посвящены мн. произведения сов. поэтов, писателей, драматургов, художников, скульпторов; её именем названы улицы мн. городов СССР. На Минском шоссе близ дер. Петрищево К. поставлен памятник (скульпторы О. А. Иконников и В. А. Фёдоров).С 1942 могила К. находится на Новодевичьем кладбище в Москве; на месте первоначального захоронения К. в дер. Петрищево установлена мемориальная плита.

Лит.: Народная героиня. (Сб. материалов о Зое Космодемьянской), М., 1943: Космодемьянская Л. Т., Повесть о Зое и Шуре, М., 1966.

КОСМОДРОМ (от космос и греч. dromes - бег, место для бега), комплекссооружений, оборудования и земельных участков, предназначенный для приёма, сборки, подготовки к пуску и пуска космических ракет. Нек-рые К. включают земельные участки для падения отработанных ступеней ракет и один из измерит, пунктов командно-измерит. комплекса. Гл. объекты К.- технич. позиция и стартовый комплекс (рис. 1). Вспомогат. и обслуживающие объекты и службы К.: измерит, пункты с кинотеодолитными станциями и радиотехнич. системами для измерения параметров начальных участков и в первую очередь активных траекторий движения ракет; расчётные бюро с ЭВМ для вычисления полётных заданий и траекторий движения ракет; зона хранения компонентов топл