БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ива; иногда заводы для производства жидкого кислорода, азота, водорода; система энергоснабжения (теплоэлектроцентрали, электросиловые станции, трансформаторные подстанции и линии электропередач); жилой городок с управленч. службами, учебным центром и комплексом бытовых и культурно-массовых учреждений; система водоснабжения; система связи и телевидения; ремонтная база и складское хозяйство; аэродром; подъездные пути и трансп. коммуникации, включая ж.-д. узел.

Техническая позиция (ТП) - комплекс сооружений с общетехнич. и специальными технологич. оборудованием и подъездными путями, обеспечивающий приём, хранение и сборку ракеты-носителя (РН) и космич. объектов ( КО), их испытания, заправку и пристыковку КО к РН. На ТП располагаются монтаж-но-испытат. корпус (МИК), монтажно-испытат. корпус КО, заправочная станция КО, компрессорная станция с реси-верной, электросиловая или трансформаторная подстанция и служебные здания. Для твердотопливных РН в состав ТП дополнительно могут входить типичное хранилище секций твердотопливных ускорителей, здание их осмотра, хранилище секций, готовых к использованию, и здание сборки и пристыковки твердо-топливных ускорителей. Ступени и узлы РН пвступают в МИК, иногда для избежания транспортировки больших ступеней РН в собранном виде завершающие сварочные операции по изготовлению крупных узлов производятся в МИК. Сборка РН выполняется двумя осн. способами: горизонтальная сборка отд. ступеней и РН в целом и пристыковка к ней КО; вертикальная сборка отд. ступеней, сборка всей РН и пристыковка КО в МИК в вертикальном положении на передвижной части пусковой системы (рис. 2) . Первый способ наиболее распространён. Для РН, работающих на жидком топливе и имеющих твердотопливные ускорители, строятся 2 МИК: для сборки и испытаний жидкостной ракеты и для сборки твердотопливных ускорителей и пристыковки их к жидкостной ракете. После сборки РН проходит автономные и комплексные испытания. Параллельно производятся сборка и испытания КО. В комплект испытательного оборудования для КО входят также барокамеры для испытаний КО в целом или его элементов на герметичность в условиях глубокого вакуума. Заправка КО компонентами топлива производится на заправочной станции ТП. Криогенными компонентами топлива (кислородом,водородом, фтором, аммиаком и т. п.) КО заправляется на стартовой позиции. Из запра-

вочной станции КО перевозится в МИК, где пристыковывается к РН. После проверки правильности стыковки космич. ракета транспортируется на стартовую позицию.
Стартовый комплекс (СК) - комплекс спец. технологич. оборудования, сооружений с общетехнич. оборудованием, подготовленных участков земли с подъездными путями, необходимыми для доставки космич. ракеты на СК, установки на пусковую систему, испытаний, заправки и пуска.В состав спец. сооружений СК входят: пусковая установка; командный пункт; хранилища компонентов топлива и устройства для заправки ими РН и КО; трансформаторная подстанция и резервная дизель-электрич. станция; холодильные установки или холодильный центр и др. СК может иметь неск. стартовых площадок (табл.). На стартовой позиции транспортно-устано-вочный агрегат поднимает ракету в вертикальное положение и опускает её на пусковую систему. Стационарные установщики монтируются около пусковой системы; ж.-д. транспортно-установоч-ная тележка с ракетой наезжает на стрелу-платформу и вместе с ней поднимается в вертикальное положение. Пусковая система обеспечивает приём, вертика-лизацию и удержание ракеты, подвод к ней электрич. заправочных, пневматич. дренажных и пр. коммуникаций и пуск ракеты. Пусковые системы могут иметь кабель-заправочные мачты, механизмы стыковки электро- и пневморазъёмов, наполнительных и дренажных соединений. Мачты выполняются отбрасываемыми и стационарными. Кабель-заправочные мачты иногда выполняют функции агрегатов обслуживания. Для СК, не имеющих стационарных заправочных средств, на стартовую площадку подаются передвижные заправщики. Компоненты топлива обычно дозируются автоматически по датчикам уровней топлива в баках ракеты. Применяется также дозировка счётчиками-расходомерами. Для заправки сжатыми газами станции газоснабжения могут иметь воздушные компрессоры высокого давления, гелиевые компрессоры и газификаторы жидкого азота с плунжерными насосами высокого давления. Перед заправкой производится термостатирование топлива для обеспечения допустимой разницы темп-р окислителя и горючего; максимальной и минимальной темп-р компонентов, поступающих в двигатель ракеты; требуемого значения плотности топлива; переохлаждения криогенных компонентов. Переохлаждение продолжается в течение всего времени нахождения ракеты на пусковой системе. Если переохлаждение не применяется, испарение компонентов в ракете компенсируется автома-тич. подпиткой. Все процессы подготовки к заправке, включая процессы хранения топлива, и заправка осуществляются обычно автоматически. Посадка космонавтов производится после окончания заправки РН и КО. Все операции предстартовой подготовки фиксируются на пульте пуска набором транспарантов готовно-стей. После полной готовности всех систем подаётся команда и включается автоматич. схема пуска.

Первый ИСЗ был запущен с космодрома Байконур (СССР), за рубежом космические ракеты запускались с К.: США - Ванденберг (Калифорния), мыс Кеннеди (Флорида), Уоллопс (Виргиния); Франция - Хаммагир (Алжир), Куру (Франц. Гвиана); Италия - Сан-Марко (у берегов Кении); Япония - Утиноура; КНР - Чанчэнцзе; Великобритания - Вумера (Австралия).

Лит.: Космонавтика, М., 1970 (Маленькая энциклопедия); «Aviation Week», 1965, ?. 83, № 1. p. 36-37. 41-43, 1966, ?. 84, № 25, p. 71-182;«Hydraulics and Pneumatics». 1967, v. 20, N2 12, p. 90-93; «Mechanical Engineering», 1969, ?. 91, №6 - 10; «SpaceflighU, 1971, ?. 13, № 2, p. 61 - 65.

Техническая характеристика американских стартовых комплексов

Характеристика комплекса

СК-39 для ракет-носителей «Сатурн-5»

СК-37 для ракет-носителей «Сатурн-1»

СК-40-41 для ракет-носителей «Титан-ЗС»
Общая площадь, га

48,6

48

8,4
Стоимость комплекса, млн. долл.

800

65

176
Количество стартовых площадок

21

22

2
Транспорт для перевозки ракет или их ступеней

Гусеничный транспорт

2 колёсных транспортёра для ступеней I и II

2 локомотива по 735,5 квт. (1000 л. с.)
Время подготовки ракет к пуску, сут

50-70

25

1
Время ремонта после пуска, суш

14-42

30-603

до 14

1 Одна площадка законсервирована; с неё был произведён только запуск «Аполлона-10». 2 Одна площадка законсервирована. 3 30-60 сут - время на подготовку к пуску и ремонт.




КОСМОИДНАЯ ЧЕШУЯ, чешуя древних кистепёрых и двоякодышащих рыб, наружная поверхность к-рой образована слоем космина (отсюда название) - сплошным "паркетом" тесно сомкнутых кожных зубов. Сверху К. ч. покрыта твёрдым эмалеподобным дентином, придающим ей характерный блеск. Космин подстилается слоем губчатой кости; в основании К. ч. лежит мощный слой пластинчатой кости - изопедина. В эволюции кистепёрых и двоякодышащих наружный и губчатый слои К. ч. постепенно редуцируются. У совр. кистепёрой рыбы латимерии на поверхности чешуи сохранились отд. бугорки дентина.

КОСМОЛОГИЧЕСКАЯ ПОСТОЯННАЯ, постоянная Л, к-рую А. Эйнштейн в 1917 ввёл в свои уравнения тяготения (1916), чтобы они могли иметь решения, описывающие стационарную Вселенную, и удовлетворяли требованию относительности инерции (см. Относительности теория). Физич. смысл введения К. п, заключается в допущении существования особых космич. сил (отталкивания при Л> 0 и притяжения при Л< 0), возрастающих с расстоянием. Поскольку требование стационарности Вселенной отпало с открытием разбегания галактик (см. Красное смещение), Эйнштейн в 1931 отказался от К. п. С тех пор обычно принималось, что А = 0. В настоящее время (70-е гг. 20 в.) допускается и др. возможность: К. п.- крайне малая (~10-55 см-2) величина.

Лит.: Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика, М., 1967. Г.И.Наан.

КОСМОЛОГИЧЕСКИЕ ПАРАДОКСЫ, затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом или достаточно большие её области. Так, при распространении на Вселенную второго начала термодинамики (без учёта гравитации) в прошлом делался вывод о необходимости тепловой смерти; возраст Метагалактики в теории нестационарной Вселенной (см. Космология) до 50-х гг. 20 в. оказывался меньше возраста Земли. Однако обычно под К. п. понимают два конкретных парадокса, возникающих при космо-логич. применении законов классической (ньютоновой) физики: фотометрический (парадокс Шезо - Ольберса, назв. по имени швейц. астронома Ж. Шезо, 1744, и нем. астронома Г. В. Ольберса, 1826) и гравитационный (парадокс Неймана - Зелигера, назв. по имени нем. учёных К. Неймана и X. Зелигера, 19 в.). Эти парадоксы (К. п. в узком смысле слова) преодолены релятивистской космологией. Классич. физика затрудняется объяснить, почему ночью темно: если повсюду в бесконечном пространстве стационарной Вселенной (или хотя бы в достаточно большой её области) имеются излучающие звёзды, то в любом направлении на луче зрения должна оказаться к.-н. звезда и вся поверхность неба должна представляться ослепительно яркой, подобной, напр., поверхности Солнца. Это противоречие с тем, что наблюдается в действительности, и наз. фотометрическим парадоксом. В релятивистской космологии он не возникает, поскольку из-за красного смещения яркость далёких объектов понижается. Гравитационный парадокс имеет менее очевидный характер и состоит в том, что закон всемирного тяготения Ньютона не даёт к.-л. разумного ответа на вопрос о гравитационном поле, создаваемом бесконечной системой масс (если только не делать очень специальных предположений о характере пространственного распределения этих масс). Для космо-логич. масштабов ответ даёт теория А. Эйнштейна, в к-рой закон всемирного тяготения уточняется для случая очень сильных гравитационных полей.

Лит.: Зельманов А. Л., Гравитационный парадокс, в кн.: физический энциклопедический словарь, т. 1, М., 1960; Фотометрический парадокс, там же, т. 5, М., 1966; То1man R. С., Relativity thermodynamics and cosmology, Oxf., 1934.

Г. И. Наан.

КОСМОЛОГИЯ (от космос и ...логия), учение о Вселенной как едином целом и о всей охваченной астрономич. наблюдениями области Вселенной как части целого; раздел астрономии. Выводы К. (модели Вселенной) основываются на законах физики и данных наблюдательной астрономии, а также на философских принципах (в конечном счёте - на всей системе знаний) своей эпохи. Важнейшим философским постулатом К. является положение, согласно к-рому законы природы (законы физики), установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы (распространены) на значительно большие области, в конечном счёте - на всю Вселенную. Без этого постулата К. как наука невозможна.

Космологич. теории разных эпох (а часто и относящиеся к одной и той же эпохе) существенно различаются в зависимости от того, какие физич. принципы и законы принимаются в качестве достаточно универсальных и кладутся в основу К. Степень универсальности принципов и законов не может быть проверена непосредственным путём, но построенные на их основе модели должны допускать проверку; для наблюдаемой области Вселенной ("астрономической Вселенной") выводы из глобальной модели должны подтверждаться наблюдениями (во всяком случае не противоречить им), а также предсказывать новые явления, к-рые ранее не наблюдались. Из необозримого множества моделей, к-рые можно построить, лишь очень немногие могут удовлетворить этому критерию. В 70-х гг. 20 в. этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности (в релятивистской К.) однородные изотропные модели нестационарной горячей Вселенной.



Историческая справка. В наивной фор