БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481ступает в нек-ром отношении как К.

Определённость К. придаёт его граница. Она может быть пространственно-временной, Количественной, качественной. Граница и отделяет конечный объект от других, и связывает его с ними. Поэтому К., с одной стороны, обладает относительно самостоятельным, обособленным бытием, а с другой - обусловлено чем-то другим и зависит от него. В этом заключается противоречивость К. Наиболее глубокое представление о К. даётся знанием присущей ему меры. Наличие границы или меры необходимо предполагает возможность выхода за неё, т. е. отрицания данного К., перехода или превращения его в другое. Учёт этого приводит к диалектич. концепции К., согласно к-рой оно может быть понято только как единство собств. бытия с собств. небытием, как взаимопереход их друг в друга. Иначе говоря, К. должно пониматься как движущееся, изменяющееся, преходящее.

Рассмотрение процесса движения К., в ходе к-рого совершается постоянный выход за его границу, ведёт к идее бесконечности. Связь К. с бесконечным носит двоякий характер: во-первых, всякий конечный объект связан с бесконечным многообразием других конечных объектов "вне себя"(экстенсивная бесконечность); во-вторых, он содержит бесконечное в себе как выражение всеобщих, инвариантных характеристик (интенсивная бесконечность). Следовательно, при познании любого материального объекта мы наталкиваемся на единство К. и бесконечного. Всякий материальный объект неисчерпаем (принцип неисчерпаемости материи). Познание "заключается в том, что мы находим и констатируем бесконечное в конечном, вечное - в преходящем" (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 548).

В математике понятие К. (как и понятие бесконечного) конкретизируется применительно к специфике матема-тич. объектов. При построении той или иной математич. теории оно получает различные истолкования, в к-рых учитываются лишь те способы определения и ограничения объектов, с к-рыми оперирует данная теория. При рассмотрении объектов, конечных в одном отношении и бесконечных в другом, в математике яе-редко называют их конечными, но неограниченными, или бесконечными, но ограниченными (напр., множество точек отрезка прямой бесконечно, но ограничено; замкнутое эллиптич. пространство Римана конечно, но не ограничено). В этих случаях, однако, под конечностью (бесконечностью) также понимается наличие (отсутствие) границы в нек-ром отношении (напр., пространство Римана конечно в том смысле, что имеет количеств, границу, характеризующую величину наибольшего расстояния в нём). В наиболее общей форме математич. определения К. (конечного множества) даются в математич. логике и теории множеств (напр., дедекиндово определение: множество М конечно, если среди его собственных подмножеств не существует такого, к-рое было бы эквивалентно ему). Доказано, что среди различных определений конечного множества не может быть ни "самого сильного", ни "самого слабого", т. е. для любого из них найдётся как такое определение, к-рое логически выводимо из него, так и такое, из к-рого оно само может быть выведено. А. С. Кармин.



КОНЕЧНО-МОРЕННЫЙ РЕЛЬЕФ, рельеф, возникший у конца долинных и материковых ледников; см. Моренный рельеф.



КОНЕЧНОСТИ, 1) у животных органы, служащие, как правило, для передвижения. У разных групп животных К. могут различаться по происхождению и строению, но выполнять сходные функции (аналогичные органы). Простейшие К.- параподии многощетинко-вых кольчатых червей - парные (по 1 паре на сегмент тела), короткие, мускулистые и подвижные придатки, состоящие каждый из общего основания и 2 ветвей - спинной и брюшной, часто снабжённых особыми щетинками. Благодаря однообразным гребущим движениям параподии животное может плыть или, цепляясь щетинками, передвигаться по грунту. К. членистоногих - дальнейшее развитие параподии - соединены с туловищем суставами и образуют многочленные рычаги, значительно более подвижные. Первично каждый сегмент тела членистоногих имел пару К., но в связи с дифференциацией отделов туловища и усложнением функций К. на нек-рых сегментах они исчезли, на других частично или полностью утеряли двигательную функцию. Так, К. головного отдела превратились в осязательные придатки и челюсти, нек-рые К. грудного отдела- в т. н. ногочелюсти, брюшного - в ко-пулятивные органы (у самцов) или яйцеклад (у самок). К. ракообразных, будучи первично двуветвистыми, состоящими из основания-протоподита и 2 ветвей - наружной (экзоподит) и внутренней (эндо-подит), часто утрачивают одну из ветвей (или она сильно редуцируется). Ходильные К. паукообразных (4 пары), насекомых (3 пары) и многоножек, как правило, состоят из одного ряда члеников. Различные придатки туловища других беспозвоночных, часто также выполняющие двигат. функцию, обычно К. не называются, напр, щупальца-руки головоногих моллюсков, лучи-руки иглокожих.

У хордовых животных различают непарные и парные К. У низших хордовых (личинки оболочников, ланцетник) непарные К. представлены кожной складкой, в к-рой можно выделить спинную, брюшную и хвостовую части. В виде общей складки закладываются непарные К. и у личинок круглоротых, рыб и земноводных. У взрослых низших позвоночных в связи с дифференциацией функций единая складка распадается на отд. плавники (рис. 1, А,Б), поддерживаемые хрящевыми или костными лучами и имеющие собственную мускулатуру. Складка сохраняется лишь у водных хвостатых земноводных. У всех наземных позвоночных непарных К. нет, но они могут вторично возникать при возврате к водному образу жизни (напр., у ихтиозавров, сирен, китов). Непарные плавники обеспечивают устойчивость тела в воде, способствуют движению животного вперёд, служат гл. обр. рулями. Парные К. появляются у рыб, у к-рых они служат рулями глубины и органами равновесия. По-видимому, парные К. первично возникли также в виде непрерывных боковых кожных складок, из к-рых в дальнейшем сохранились лишь наиболее функционально важные - передняя и задняя части (рис. 1, Б, В). Опорой каждой пары К. служит т. н. пояс К. Основу каждой К. составляет скелет, состоящий из хрящевых или (чаще ) костных образований, сочленённых друг с другом и приводимых в движение мышцами. Среди парных К. (плавников) рыб различают грудные, расположенные позади головы, и брюшные,лежащие обычно перед анальным отверстием; соответственно пояса К. называются грудным или плечевым и тазовым. Скелет К. у большинства рыб развит слабо, плавники укреплены в основном лучами кожного происхождения. Только у кистепёрых и двоякодышащих рыб скелет К. развит лучше и более дифференцирован (рис. 2, А). Преобразование парных К. нек-рых ископаемых кистепёрых рыб привело к появлению пятипалых в своей основе К. наземных позвоночных (рис. 2,Б), к-рые стали гл. органами движения на суше (см. Локомоция). К. наземных позвоночных состоят из трёх отделов: плеча (в передних) или бедра (в задних), сочленяющихся с поясом К., предплечья (в передней) или голени (в задней) с двумя костями в каждой (соответственно-локтевая и лучевая, малая и большая берцовые) и кисти (в передних) или стопы (в задних), состоящих из большого числа мелких косточек, группирующихся в передней К. в запястье, пясть и фаланги пальцев, а в задней - в предплюсну, плюсну и также фаланги пальцев. В ходе эволюции парные К. подверглись значит, преобразованиям. Развитие полёта у летающих ящеров, птиц и летучих мышей вызвало превращение передних К. в крылья. К. морских ящеров, китообразных, ластоногих стали ластами, внешне напоминающими плавники рыб. Приспособление к быстрому бегу привело к сокращению числа пальцев (до 1 у лошади) и площади опоры К. путём замены стопохождения пальце-хождением, а у копытных - даже копытохождением с опорой только на конечную фалангу. К. наземных позвоночных часто выполняют ряд дополнит, функций, напр, передние К. кротов превратились в органы рытья, а у древесных форм, напр. К. обезьян,- хватания. В ряде случаев парные К. с утерей функционального значения исчезают: напр, брюшные плавники угрей, задние К. китообразных и сирен, обе пары К. у безногих земноводных, нек-рых ящериц, всех змей.

2) У человека различают верхние и нижние К., причленяющиеся к телу плечевым и тазовым поясом. В связи с переходом предков человека к прямо-хождению, т. е. хождению только на задних К., передние К. освободились и под влиянием труда преобразовались в совершенные органы, имеющие универсальное назначение,- руки.

В. Б. Суханов.

КОНЕЧНЫЙ ВЫКЛЮЧАТЕЛЬ, концевой, электрич. аппарат, обеспечивающий переключения в цепях управления электроприводов машин (механизмов) или их органов в определённых точках движения. К. в. приводится в действие самим перемещающимся механизмом обычно в конце своего движения либо в заданном месте пути следования. Напр., в подъёмно-транспортных машинах К. в. отключает электродвигатель и включает тормозное устройство при подходе к конечным точкам пути, что предохраняет механизм от аварии. К. в. бывают контактными и бесконтактными. По конструкции различают нажимные (кнопочные), рычажные, шпиндельные и вращающиеся К. в.



КОНЕЧНЫХ ПРИРАЩЕНИЙ ФОРМУЛА, формула Лагранжа, одна из основных формул дифференциального исчисления, дающая связь между приращением функции f(x) и значениями её производной, эта формула имеет вид:

[1303-1.jpg](1)

где с - нек-рое число, удовлетворяющее неравенствам а<с
[1303-2.jpg]

Среди различных обобщений К. п. ф. следует отметить формулу Бонне

[1303-3.jpg]

её частный случай - формулу Коши

[1303-4.jpg]



КОНЕЧНЫХ РАЗНОСТЕЙ ИСЧИСЛЕНИЕ, раздел математики, в к-ром изучаются функции при дискретном (прерывном) изменении аргумента, в отличие от дифференциального исчисления и интегрального исчисления, где аргумент предполагается непрерывно изменяющимся. Конечными разностями "вперёд" для последовательности значений y1 = f(x1), y2 = f(x2), ..., yk = f(xk), ... функции f(x), соответствующих последовательности значений аргумента х0, ..., Xk, ... (хk = Х0 + kh, h - постоянное, k - целое),

[1303-5.jpg]

наз. выражения:

Соответственно, конечные разности "назад"[1303-6.jpg][1303-7.jpg] определяются равенствами

При интерполяции часто пользуются т.н. центральными разностями бnу, к-рые вычисляются при нечётном ? в точках x = Xi + 1/2h, а при чётном [1303-8.jpg]

n в точках x = xi по формулам

Они дополняются средними арифметическими

[1303-9.jpg]

где т - 1,2,...; если т = 0, то полагают

[1303-10.jpg]

Центральные разности бnу связаны с конечными разностями Dnу соотношениями

[1303-11.jpg]

Если значения аргумента не составляют арифметич. прогрессии, т. е. Xk+1-Xk не есть тождественно постоянная, то вместо конечных разностей пользуются разделёнными разностями, последовательно определяемыми по формулам

[1303-12.jpg]

Связь между конечными разностями и производными устанавливается формулой [1303-13.jpg] , где[1303-14.jpg] Существует полная аналогия между ролью конечных разностей в теории функций дискретного аргумента и ролью производных в теории функций непрерывного аргумента; конечные разности являются удобным аппаратом при построении ряда разделов численного анализа: интерполирование функций, численное дифференцирование и интегрирование, численные методы решения дифференциальных уравнений.

Напр., для приближённого решения дифференциального уравнения (обыкновенного или с частными производными) часто заменяют входящие в него производные соответствующими разностями, делёнными на степени разностей аргументов,и решают полученное таким способом разностное уравнение (одномерное или многомерное).

Важный раздел К. р. и. посвящён решению разностных уравнений вида

[1303-15.jpg](1)

- задаче, во мно