БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481жду собой. Haпр., в декартовых прямоугольных координатах уравнением (х - а)2 + (у - b)2 = 1 определяется множество всех окружностей радиуса 1 на плоскости хОу, полагая, напр., а = = 3, b = 4, мы выделяем из этого множества вполне определённую окружность с центром (3, 4), следовательно, а и b суть П. окружности в рассматриваемом множестве. См. также параметрическое представление функций.

ПАРАМЕТР в технике, величина, характеризующая к.-л. свойство процесса, явления, системы, технич. устройства. Напр., в механич. системах такими величинами являются масса, коэфф. трения, момент инерции, натяжение и т. п.; для тепловых процессов П. служат теплоёмкость, тепловой поток, температурный напор и т. д.; из электрич. П. наиболее характерны сопротивление, индуктивность, ёмкость. Физич. процессы, протекающие в системе, описываются уравнениями, связывающими переменные величины этих процессов. П. обычно входят в коэфф. уравнений, они могут быть постоянными или переменными (зависящими от времени или координат системы).

П. системы (устройства) могут быть сосредоточенными или распределёнными в пространстве (по одной, двум либо трём координатам). Характерный пример системы с распределёнными параметрами - линия электропередачи, у к-рой индуктивность, ёмкость, сопротивление (проводимость) распределены по всей длине линии; примером сосредоточенного параметра может служить нагрузка на балку, приложенная на малом по сравнению с длиной балки участке. М. М. Майзелъ.

ПАРАМЕТР ПОТОКА ОТКАЗОВ, показатель надёжности ремонтируемых технич. устройств. Характеризует среднее кол-во отказов ремонтируемого устройства в единицу времени; зависит от времени.

ПАРАМЕТР УДАРА, прицельное расстояние, прицельный параметр, в классич. теории рассеяния частиц - расстояние между рассеивающим силовым центром и линией первоначального движения рассеивающейся частицы.

ПАРАМЕТРИТ (от пара... и греч. metrа - матка), воспаление тазовой клетчатки, расположенной около матки. Вызывается чаще всего стафило- и стрептококками, кишечной палочкой, к-рые проникают в клетчатку из шейки матки (при абортах, особенно внебольничных), из её тела (после осложнённых родов), реже из др. органов (прямая кишка, мочевой пузырь). П. начинается на 2-й неделе послеродового или послеабортного периодов общим недомоганием, слабостью, ознобом, повышением темп-ры до 38-39 оС, небольшими болями внизу живота. Возникающий в клетчатке воспалит. инфильтрат доходит до стенок малого таза. Через 1-2 недели, как правило, происходит рассасывание инфильтрата. Нагноение наблюдается редко. Лечение в острой стадии: покой, холод на низ живота, антибиотики, противовоспалит. средства; в хронич. стадии для рассасывания инфильтрата - физиотерапевтич. процедуры. Профилактика - предупреждение занесения инфекции во время родов и абортов, борьба с незаконными абортами.

Лит.: Бартельс А. В., Послеродовые инфекционные заболевания, М., 1973.

А. П. Кирющенков.

ПАРАМЕТРИЧЕСКИЕ ГЕНЕРАТОРЫ СВЕТА, источники когерентного оптич. излучения, осн. элементом к-рых является нелинейный кристалл, в к-ром мощная световая волна фиксированной частоты параметрически возбуждает световые волны меньшей частоты. Частоты параметрически возбуждаемых волн определяются дисперсией света в кристалле. Изменение дисперсии среды, т. е. величины n, позволяет управлять частотой волн, излучаемых П. г. с.

П. г. с. предложен в 1962 С. А. Ахмановым и Р. В. Хохловым (СССР). В 1965 были созданы первые П. г. с. Джорджмейном и Миллером (США) и несколько позднее Ахматовым и Хохловым с сотрудниками. Световая волна большой интенсивности (волна накачки), распространяясь в кристалле, модулирует его диэлектрическую проницаемость e (см. Нелинейная оптика). Если поле волны накачки: Eн = Eн0sin (wнt - kнх + фн) (kн = = wн/vн, - волновое число, фн - начальная фаза), диэлектрич. проницаемость e изменяется по закону бегущей

волны: e = e0[1 + m sin(wнt + kнx + фн)],

где т = 4Пи*xEн0/e0 наз. глубиной модуляции диэлектрической проницаемости, x - величина, характеризующая нелинейные свойства кристалла. У входной грани (x = 0) кристалла с переменной во времени диэлектрич. проницаемостью e возбуждаются электромагнитные колебания с частотами w1 и w2 и фазами ф1, ф2, связанными соотношениями: w1 + w2 = wн и ф1 + ф2=фн, аналогично параметрич. возбуждению колебаний в двухконтурной системе (см. Параметрическое возбуждение и усиление электрических колебаний). Колебания с частотами w1, w2 распространяются внутри кристалла в виде двух световых волн. Волна накачки отдаёт им свою энергию на всём пути их распространения, если выполняется соотношение между фазами:
[1913-12.jpg]

Это соответствует условию фазового синхронизма:
[1913-13.jpg]

Соотношение (2) означает, что волновые векторы волны накачки kн и возбуждённых волн k1и k2образуют замкнутый треугольник. Из (2) следует условие для показателей преломления кристалла на частотах wн,w1, w2: n (wн) >= n (w2) + + [n (w1) - n (w2)] w1/wн.

При фазовом синхронизме амплитуды возбуждаемых волн по мере их распроранения в кристалле непрерывно увеличиваются:
[1913-14.jpg]

где б-коэфф. затухания волны в обычной (линейной) среде. Очевидно, параметрич. возбуждение происходит, если поле накачки превышает порог: Ено > бс/Пи*х корень квадратный из w1w2. В среде с нормальной дисперсией, когда показатель преломления n увеличивается с ростом частоты со, синхронное взаимодействие волн неосуществимо (рис. 1). Однако в анизотропных кристаллах, в к-рых могут распространяться два типа волн (обыкновенная и необыкновенная), условие фазового синхронизма может быть осуществлено, если использовать зависимость показателя преломления не только от частоты, но и от поляризации волны и направления распространения. Напр., в одноосном отрицательном кристалле (см. Кристаллооптика) показатель преломления обыкновенной волны nо больше показателя преломления необыкновенной волны ne, к-рый зависит от направления распространения волны относительно оптич. оси кристалла. Если волновые векторы параллельны друг другу, то условию фазового синхронизма соответствует определённое направление, вдоль к-рого:
[1913-16.jpg]

[1913-15.jpg]

Рис. 1. Зависимость показателя преломления n от частоты волны w при нормальной дисперсии.

Угол vс относительно оптич. оси кристалла наз. углом синхронизма, является функцией частот накачки и одной из возбуждаемых волн. Изменяя направление распространения накачки относительно оптич. оси (поворачивая кристалл), можно плавно перестраивать частоту П. г. с. (рис. 2). Существуют и др. способы перестройки частоты П. г. с., связанные с зависимостью показателя преломления n от темп-ры, внешнего электрич. поля и т. д.

[1913-17.jpg]

Рис.2. a-условие синхронизма в нелинейном кристалле; v - угол между оптической осью кристалла и лучом накачки; vc - направление синхронизма; б-изменение длины волнового вектора kн необыкновенной волны накачки и обыкновенных генерируемых волн k1 и k2 при повороте кристалла; в-зависимость частот w1 и w2 генерируемых волн от v.

Для увеличения мощности П. г. с. кристалл помещают внутри открытого резонатора, благодаря чему волны пробегают кристалл многократно за время действия накачки (увеличивается эффективная длина кристалла, рис. 3). Перестройка частоты такого резонаторного П. г. с. происходит небольшими скачками, определяемыми разностью частот, соответствующих продольным модам резонатора. Плавную перестройку можно осуществить, комбинируя повороты кристалла с изменением параметров резонатора.



[1913-18.jpg]

Рис. 3. Нелинейный кристалл, помещённый в оптический резонатор; З1 и З2 - зеркала, образующие резонатор.

Во многих странах организован промышленный выпуск П. г. с. Источником накачки служит излучение лазера (импульсного и непрерывного действия) или его оптических гармоник. Существующие П. г. с. перекрывают диапазон длин волн от 0,5 до 4 мкм. Разрабатываются П. г. с., перестраиваемые в области L 10 - 15 мкм. Отд. П. г. с. обеспечивают перестройку частоты в пределах 10% от (Он. Уникальные характеристики П. г. с. (когерентность излучения, узость спектральных линий, высокая мощность, плавная перестройка частоты) превращают его в один из основных приборов для спектроскопических исследований (активная спектроскопия и др.), а также позволяют использовать его для избирательного воздействия на вещество, в частности на биологические объекты.

Лит.: Ахманов С. А., Хохлов Р. В., Параметрические усилители и генераторы света, "Успехи физических наук", 1966, т. 88, в. 3, с. 439; Ярив А., Квантовая электроника и нелинейная оптика, пер. с англ., М., 1973. А. П. Сухоруков.

ПАРАМЕТРИЧЕСКИЙ ПОЛУПРОВОДНИКОВЫЙ ДИОД, полупроводниковый диод, относящийся к группе варакторных диодов, принцип действия к-рых основан на эффекте зависимости ёмкости р-n-перехода от приложенного к нему напряжения. В параметрических усилителях П. п. д. используют в качестве элемента с переменной ёмкостью, включаемого в колебательный контур усилителя (использование p-n-перехода с этой целью впервые предложено Б. М. Вулом в 1954); на П. п. д. подаётся постоянное обратное смещение (обычно - 0,3-2,0 в) и два переменных СВЧ (до неск. сотен Ггц) сигнала - от генератора накачки и усиливаемый. П. п. д. отличаются низким уровнем собств. шумов, к-рый зависит в основном от сопротивления полупроводникового материала и его темп-ры. Для повышения верхней границы полосы частот усиливаемых колебаний стремятся уменьшить ёмкость П. п. д. в рабочей точке Со и постоянную времени диода ts = rs · Со, где rs - суммарное сопротивление объёма П. п. д., примыкающего к р-n-переходу, и контактов. Мощность колебаний накачки ограничивается допустимым значением обратного напряжения [Uдоп на диоде. П. п. д. изготавливают чаще всего из кремния, германия, арсенида галлия. Значения осн. параметров П. п. д., выпускаемых в СССР и за рубежом: Со =0,01-2 пф, ts = 0,1-2 псек, Uдоп = 6-10 в и диапазон рабочих темп-р 4-350 К.

Лит.: Физические основы работы полупроводниковых СВЧ диодов, М., 1965; СВЧ - полупроводниковые приборы и их применение, пер. с англ., М., 1972. И. Г. Васильев.

ПАРАМЕТРИЧЕСКИЙ УСИЛИТЕЛЬ,

радиоэлектронное устройство, в к-ром усиление сигнала по мощности осуществляется за счёт энергии внешнего источника (т. н. генератора накачки), периодически изменяющего ёмкость или индуктивность нелинейного реактивного элемента электрич. цепи усилителя. П. у. применяют гл. обр. в радиоастрономии, дальней космич. и спутниковой связи и радиолокации как малошумящий усилитель слабых сигналов, поступающих на вход радиоприёмного устройства, преим. в диапазоне СВЧ. Чаще всего в П. у. в качестве реактивного элемента используют параметрический полупроводниковый диод (ППД). Кроме того, в диапазоне СВЧ применяют П. у., работающие на электроннолучевых лампах, а в области низких (звуковых) частот - П. у. с ферромагнитным (ферритовым) элементом.

Наибольшее распространение получили двухчастотные (или двухконтурные)П. у.: в сантиметровом диапазоне - регенеративные "отражательные усилители с сохранением частоты" (рис., а), на дециметровых волнах - усилители - преобразователи частоты (рис., 6) (см. Параметрическое возбуждение и усиление электрических колебаний). В качестве приёмного колебательного контура и колебательного контура, настраиваемого на вспомогат., или "холостую", частоту (равную чаще всего разности или сумме частот сигнала и генератора накачки), в П. у. обычно используют объёмные резонаторы, внутри к-рых располагают ППД. В генераторах накачки применяют лавинно-пролётный полупроводниковый диод, Тонна диод, варакторный умножитель частоты и реже отражательный клистрон. Частота накачки и "холостая" частота выбираются в большинстве случаев близкими к критич. частоте fкр ППД (т. е. к частоте, на к-рой П. у. перестаёт усиливать); при этом частота сигнала должна быть значительно меньшей fкр. Для получения минимальных шумовых температур (10-20 К и менее) применяют П. у., охлаждаемые до темп-р жидкого азота (77 К), жидкого гелия (4,2 К) или промежуточных (обычно 15-20 К); у неохлаждаемых П. у. шумов