БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481получили три формы П. с. э.: короткая, предложенная Менделеевым (рис. 2) и получившая всеобщее признание (в совр. виде она дана на цветной вклейке); длинная (рис. 3); лестничная (рис. 4). Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером. Лестничная форма предложена англ. учёным Т. Бейли (1882), дат. учёным Ю. Томсеном (1895) и усовершенствована Н. Бором (1921). Каждая из трёх форм имеет достоинства и недостатки.

Фундаментальным принципом построения П. с. э. является разделение всех хим. элементов на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными хим. свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое хим. сходство, гл. обр. в высших степенях окисления, к-рые, как правило, соответствуют номеру группы. Периодом наз. совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом (особый случай - первый период); каждый период содержит строго определённое число элементов.

Рис. 3. Длинная форма периодической системы элементов (современный вариант).

Рис. 4. Лестничная форма периодической системы элементов (по Н. Бору, 1921).

П. с. э. состоит из 8 групп и 7 периодов (седьмой пока не завершён). Специфика первого периода в том, что он содержит всего 2 элемента: n и Не. Место n в системе неоднозначно: поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо (предпочтительнее) в Vila-подгруппу. Гелий - первый представитель Villa -подгруппы (однако долгое время Не и все инертные газы объединяли в самостоят. нулевую группу).

Второй период (Li - Ne) содержит 8 элементов. Он начинается щелочным металлом Li, единств. степень окисления к-рого равна I. Затем идёт Be - металл, степень окисления II. Металлич. характер следующего элемента В выражен слабо (степень окисления III). Идущий за ним С - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, О, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положит. валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne.

Третий период (Na-Аr) также содержит 8 элементов, характер изменения свойств к-рых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Аl по сравнению с В, хотя Аl присуща амфотерностъ. Si, p, S, Cl, Аr - типичные неметаллы, но все они (кроме Аr) проявляют высшие степени окисления, равные номеру группы. Т. о., в обоих периодах по мере увеличения Z наблюдается ослабление металлич. и усиление неметаллич. характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и О являются наряду с n основными элементами органич. материи (органогенами). Все элементы первых трёх периодов входят в подгруппы а.

По совр. терминологии (см. далее), элементы этих периодов относятся к s-элементам (щелочные и щёлочноземельные металлы), составляющим Ia- и Па-подгруппы (выделены на цветной таблице красным цветом), и р-элементам (В-Ne, al-Аr), входящим в IIIa- VIIIa- подгруппы (их символы выделены оранжевым цветом). Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов, а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для ионных радиусов.

Четвёртый период (К-Кr) содержит 18 элементов (первый большой период, по Менделееву). После щелочного металла К и щёлочноземельного Са (s-элементы) следует ряд из десяти т. н. переходных элементов (Sc-Zn), или d-элементов (символы даны синим цветом), к-рые входят в подгруппы б соответствующих групп П. с. э. Большинство переходных элементов (все они металлы) проявляет высшие степени окисления, равные номеру группы. Исключение - триада Fe-Со-Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Кr (р-элементы), принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Кr способен образовывать хим. соединения (гл. обр. с F), но степень окисления VIII для него неизвестна.

Пятый период (Rb-Хе) построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов (Y-Cd), d-элементов. Специфич. особенности периода: 1) в триаде Ru-Rh-Pd только рутений проявляет степень окисления VIII; 2) все элементы подгрупп a проявляют высшие степени окисления, равные номеру группы, включая и Хе; 3) у I отмечаются слабые металлич. свойства. Т. о., характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлич. свойства сохраняются в большом интервале порядковых номеров.

Шестой период (Cs-Rn) включает 32 элемента. В нём помимо 10 d-элементов (La, Hf-Hg) содержится совокупность из 14 f-элементов, лантаноидов, от Се до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме П. с. э. лантаноиды включаются в клетку La (поскольку их преобладающая степень окисления III) и записываются отд. строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. с. э., хорошо отражающие специфику лантаноидов на фоне целостной структуры П. с. э. Особенности периода: 1) в триаде Os-Ir-Pt только осмий проявляет степень окисления VIII; 2) At имеет более выраженный (по сравнению с I) металлич. характер; 3) Rn, по-видимому (его химия мало изучена), должен быть наиболее реакционноспособным из инертных газов.

Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из к-рых пока известно 20 (до элемента с Z = 106). Fr и Ra - элементы соответственно Ia- и IIа-подгрупп (s-элементы), Ас - аналог элементов IIIб-подгруппы (d-элемент). Следующие 14 элементов, f-элементы (с Z от 90 до 103), составляют семейство актиноидов. В короткой форме П. с. э. они занимают клетку Ас и записываются отд. строкой внизу таблицы, подобно лантаноидам, в отличие от к-рых характеризуются значит. разнообразием степеней окисления. В связи с этим в хим. отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Изучение хим. природы элементов с Z = 104 и Z = 105 показало, что эти элементы являются аналогами гафния и тантала соответственно, т. е. d-элементами, и должны размещаться в IV 6- и V б-подгруппах. Членами (5-подгрупп должны быть и последующие элементы до Z =112, а далее (Z = 113-118) появятся р-элементы (IIIa - Villa-подгруппы).

Теория П. с. э. В основе теории П. с. э. лежит представление о специфич. закономерностях построения электронных оболочек (слоев, уровней) и подоболочек (оболочек, подуровней) в атомах по мере роста Z (см. Атом, Атомная физика). Это представление было развито Бором в 1913-21 с учётом характера изменения свойств хим. элементов в П. с. э. и результатов изучения их атомных спектров. Бор выявил три существ. особенности формирования электронных конфигураций атомов: 1) заполнение электронных оболочек (кроме оболочек, отвечающих значениям главного квантового числа n = 1 и 2) происходит не монотонно до полной их ёмкости, а прерывается появлением совокупностей электронов, относящихся к оболочкам с большими значениями п; 2) сходные типы электронных конфигураций атомов периодически повторяются; 3) границы периодов П. с. э. (за исключением первого и второго) не совпадают с границами последовательных электронных оболочек.

В обозначениях, принятых в атомной физике, реальная схема формирования электронных конфигураций атомов по мере роста Z может быть в общем виде записана след. образом:
[1929-8.jpg]

Вертикальными чертами разделены периоды П. с. э. (их номера обозначены цифрами наверху); жирным шрифтом выделены подоболочки, к-рыми завершается построение оболочек с данным п. Под обозначениями подоболочек проставлены значения главного (п) и орбитального (/) квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. В соответствии с Паули принципом ёмкость каждой электронной оболочки равна 2n2, а ёмкость каждой подоболочки - 2(2l + 1). Из вышеприведённой схемы легко определяются ёмкости по-следоват. периодов: 2, 8, 8, 18, 18, 32, 32... Каждый период начинается элементом, в атоме которого появляется электрон с новым значением п. Т. о., периоды можно характеризовать как совокупности элементов, начинающиеся элементом со значением п, равным номеру периода, и l = 0 (ns1-элементы), и завершающиеся элементом с тем же n и l = 1 (nр6-элементы); исключение - первый период, содержащий только 1s-элементы. При этом к а-подгруппам принадлежат элементы, для атомов к-рых n равно номеру периода, a l = = 0 или 1, т. е. происходит построение электронной оболочки с данным п. К б-подгруппам принадлежат элементы, в атомах к-рых происходит достройка оболочек, остававшихся незавершёнными (в данном случае n меньше номера периода, а l = 2 или 3). Первый - третий периоды П. с. э. содержат только элементы a-подгрупп.

Приведённая реальная схема формирования электронных конфигураций атомов не является безупречной, поскольку в ряде случаев чёткие границы между последовательно заполняющимися подоболочками нарушаются (напр., после заполнения в атомах Cs и Ва 6s-подоболочки в атоме лантана появляется не 4f-, а 5d-электрон, имеется 5d-электрон в атоме Gd и т. д.). Кроме того, первоначально реальная схема не могла быть выведена из к.-л. фундаментальных физ. представлений; такой вывод стал возможным благодаря применению квантовой механики к проблеме строения атома.

Типы конфигураций внеш. электронных оболочек атомов (на цветной вклейке конфигурации указаны) определяют осн. особенности хим. поведения элементов. Эти особенности являются специфическими для элементов a-подгрупп (s- и р-элементы), (б-подгрупп (d-элементы) и f-семейств (лантаноиды и актиноиды). Особый случай представляют собой элементы первого периода (Н и Не). Высокая хим. активность атомарного водорода объясняется лёгкостью отщепления единственного 1s-электрона, тогда как конфигурация атома гелия (1s 2) является весьма прочной, что обусловливает его хим. инертность.

Поскольку у элементов я-подгрупп происходит заполнение внеш. электронных оболочек (с n, равным номеру периода), то свойства элементов заметно меняются по мере роста Z. Так, во втором периоде Li (конфигурация 2s1) - химически активный металл, легко теряющий валентный электрон, a Be (2s2) - также металл, но менее активный. Металлич. характер следующего элемента В (2s2p) выражен слабо, а все последующие элементы второго периода, у к-рых происходит застройка 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внеш. электронной оболочки Ne (2s2p6) чрезвычайно прочна, поэтому неон - инертный газ. Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s- и р-элементов всех последующих периодов, однако ослабление прочности связи внешних электронов с ядром в a-подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s-элементов отмечается заметный рост химической активности, а у р-элементов - нарастание металлич. свойств. В Villa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Кr (четвёртый период) приобретает способность вступать в хим. соединения. Специфика р-элементов 4-6-го периодов связана также с тем, что они отделены от s-элементов совокупностями элементов, в атомах к-рых происходит застройка предшествующих электронных оболочек.

У переходных d