БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

с принципом причинности. Действительно, если s2>=0 и (для определённости) tA
Если s2<0, то существует такая система отсчёта, в к-рой события А и В одновременны; в этой системе s2=-l2, где l - обычное расстояние. При s2 > О существует система отсчёта, в к-рой события А и В происходят в одной точке.

В классич. физике требование инвариантности законов физики относительно преобразований Лоренца означает, что любые физич. величины должны преобразовываться как скаляры, векторы или тензоры в пространстве Минковского. Правила вычислений с такими величинами даются тензорным исчислением. Использование тензорного исчисления позволяет записывать законы физики в таком виде, что их лоренц-инвариантность становится непосредственно очевидной.

Законы сохранения в теории относительности и релятивистская механика

В О. т., так же как в классич. механике, для замкнутой физич. системы сохраняется импульс р и энергия Е, Трёхмерный вектор импульса вместе с энергией образует четырёхмерный вектор импульса-энергии с компонентами Е/с, р, обозначаемый как (E;с,р). При преобразованиях Лоренца остаётся инвариантной величина

E2- (cp)2 = m2c4, (7) где от - масса покоя частицы. Из требований лоренц-инвариантности следует, что зависимость энергии и импульса от скорости имеет вид
[1850-9.jpg]

Энергия и импульс частицы связаны соотношением р = Ev/с2. Это соотношение справедливо также для частицы с нулевой массой покоя; тогда v = с и р = Е/с. Такими частицами, по-видимому, являются фотоны (у) и электронные и мюонные нейтрино. Из (8) видно, что импульс и энергия частицы с m не равно 0 стремятся к бесконечности при v -> с.

Обсуждалась возможность существования объектов, движущихся со скоростью, большей скорости света (т. н. тахионов). Формально это не противоречит лоренц-инвариантности, но приводит к серьёзным затруднениям с выполнением требования причинности.

Масса покоя т не является сохраняющейся величиной. В частности, в процессах распадов и превращений элементарных частиц сумма энергий и импульсов частиц сохраняется, а сумма масс покоя меняется. Так, в процессе аннигиляции позитрона и электрона е++е-->2у сумма масс покоя изменяется на 2 mе .

В системе отсчёта, в к-рой тело покоится (такая система отсчёта наз. собственной), его энергия (энергия покоя) есть Ео = тс2. Если тело, оставаясь в покое, изменяет своё состояние, получая энергию в виде излучения или тепла, то из релятивистского закона сохранения энергии следует, что полученная телом энергия ДЯ связана с увеличением его массы покоя соотношением дельта Е = дельта mc2. Из этого соотношения, названного Эйнштейном принципом эквивалентности массы и энергии, следует, что величина E0 = mс2 определяет максимальную величину энергии, к-рая может быть "извлечена" из данного тела в системе отсчёта, в к-рой оно покоится.

Для движущегося тела величина
[1850-10.jpg]

определяет его кинетич. энергию. При v<<с (9) переходит в нерелятивистское выражение Екин=mv2/2, при этом импульс равен р = mv. Из определения Eкин следует, что для любого процесса в изолированной системе выполняется равенство:
[1850-11.jpg]

согласно к-рому увеличение кинетич. энергии пропорционально уменьшению суммы масс покоя. Это соотношение широко используется в ядерной физике; оно позволяет предсказывать энерговыделение в ядерных реакциях, если известны массы покоя участвующих в них частиц. Возможность протекания процессов, в к-рых происходит превращение энергии покоя в кинетич. энергию частиц, ограничена др. законами сохранения (напр., законом сохранения барионного заряда, запрещающим процесс превращения протона в позитрон и у-квант). Иногда вводят массу, определяемую как
[1850-12.jpg]

при этом связь между импульсом и энергией имеет тот же вид, что и в ньютоновской механике: р = mдвижv. Определённая таким образом масса отличается от энергии тела лишь множителем 1/с2. (В теоретич. физике часто выбирают единицы измерения так, что с = 1, тогда E = mдвиж)

Осн. уравнения релятивистской механики имеют такой же вид, как второй закон Ньютона и уравнение энергии, только вместо нерелятивистских выражений для энергии и импульса используются выражения (8):
[1850-13.jpg]

где F - сила, действующая на тело. Для заряженной частицы, движущейся в электромагнитном поле, F есть Лоренца сила.

Теория относительности и эксперимент

Предположения о точечных событиях, справедливости принципа относительности, однородности времени и однородности и изотропии пространства с неизбежностью приводят к О. т. При этом абстрактно допустим предельный случай, соответствующий с = бесконечности, однако такая возможность исключена экспериментально: доказано с огромной точностью (см. ниже), что предельная скорость с есть скорость света в вакууме (её значение дано в начале статьи).

Каковы границы применимости О. т.? Отклонения от пространственно-временной геометрии О. т., связанные с гравитацией, наблюдаемы и рассчитываются в ОТО; никаких др. ограничений применимости О. т. пока не обнаружено, хотя неоднократно высказывались подозрения, что на очень малых расстояниях (напр., ~10-17 см) понятие точечного события, а следовательно, и О. т. могут оказаться неприменимыми (см., напр., Квантование пространства-времени).

Предположение о лоренц-инвариантности и точечности событий (означающей локальность взаимодействий) лежит в основе всех совр. теорий, в к-рых существен релятивизм. Справедливость квантовой электродинамики электронов и мюонов, а следовательно, и О. т. установлена вплоть до расстояний 10-15 см. При энергиях порядка масс этих частиц согласие квантовой электродинамики с опытом установлено с относит, точностью, несколько лучшей, чем 10-5; с точностью того же порядка должна быть справедлива и механика О. т.

Релятивистские законы сохранения применяются при исследованиях превращений элементарных частиц, вызванных сильным, слабым и электромагнитным взаимодействиями; отсутствие противоречий подтверждает справедливость этих законов. Всё, что известно о названных взаимодействиях, согласуется с представлением об их лоренц-инвариантности.

Предположение о невозможности сверхсветовых сигналов, вытекающее из О. т., лежит в основе дисперсионных методов, широко используемых в теории сильных взаимодействий (см. также Квантовая теория поля)', их успех демонстрирует справедливость осн. представлений О. т.

Одним из наиболее ярких подтверждений справедливости релятивистской инвариантности явилось предсказание на её основе существования античастиц и их последующее открытие (см. Дирака уравнение, Античастицы).

Требование лоренц-инвариантности взаимодействий приводит при очень общих предположениях к т. н. СРТ-теореме, устанавливающей связь между свойствами частиц и античастиц. Эта связь выполняется на опыте для всех известных взаимодействий.

Неоднократно ставились опыты по прямой проверке осн. черт кинематики О. т. Независимость скорости света от движения источника проверена с наилучшей точностью в 1964 в опытах [Европ. центр ядерных исследований (ЦЕРН, Швейцария)], в к-рых использовались у-кванты от распада л°-мезона; при скорости Пи°v= 0,9997с относит, точность совпадения скорости Y-кванта с с составляла 10-4. Релятивистское замедление времени измерено в широком интервале скоростей с помощью поперечного Доплера эффекта и непосредственно по распадам элементарных частиц с точностью 1-5% . Неоднократно проверялась также формула тдвиж= m*корень из (l-v2/c2) наилучшая достигнутая точность - 5-10-4 (В. Мейер и др., 1963).

История частной теории относительности

Хотя О. т. в логич. смысле проста, путь, приведший к ней, был сложным. Справедливость принципа относительности для механических явлений и его связь с явлением инерции были поняты после появления теории Н. Коперника: отсутствие видимых проявлений движения Земли с неизбежностью приводило к заключению, что общее движение системы не сказывается на происходящих в ней механических явлениях. Уже в 16 в. это поясняли, описывая эксперименты на движущемся корабле. Классич. изложение принципа относительности было дано в 1632 Г. Галилеем: "Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех ... явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли .корабль или стоит неподвижно" (Галилей Г., Диалог о двух главнейших системах мира: птолемеевой и копернико-вой, М.- Л., 1948, с. 147). Принцип относительности широко использовался X. Гюйгенсом для решения задач механики.

Полная система законов движения для любой механич. системы была дана И. Ньютоном в "Началах" (1687). Ньютон, установив, что законы механики не могут быть справедливыми в любой системе отсчёта, ввёл понятия абс. пространства и абс. времени; по существу это были для него система отсчёта и временная переменная t, для к-рых выполнялись законы движения. Вопрос об измерении времени в механике Ньютона был простым, т. к. любые равномерно движущиеся часы годились для измерения t. Более сложным был вопрос об абс. пространстве. В механике Ньютона выполнялся принцип относительности. Согласно формулировке Ньютона, "относительные движения друг по отношению к другу тел, заключённых в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения" ("Математические начала натуральной философии", см. Крылов А. И., Собр. трудов, т. 7, 1936, с. 49). Поэтому нельзя было отличить покоящуюся в абсолютном пространстве систему отсчёта от равномерно движущейся. Переход от одной и. с. о. к другой в механике Ньютона описывался преобразованиями х' = х - vt, t' = t, наз. сейчас преобразованиями Галилея. Такая форма преобразований казалась очевидной, т. к. не сомневались в том, что длины предметов должны быть одинаковыми в любой системе отсчёта, а время единым. Эта уверенность подтверждалась инвариантностью законов Ньютона относительно преобразований Галилея. Столь же несомненным казалось то, что для оптич. явлений принцип относительности несправедлив. Уже в 17 в. широко использовалось представление о заполняющей пространство среде - эфире. Среди мн. функций, приписывавшихся эфиру, была передача световых возмущений. В нач. 19 в. была разработана оптика Т. Юнга - О. Френеля, в к-рой скорость света относительно эфира считалась константой, не зависящей от движения источника. Отсюда следовало нарушение принципа относительности, т. к. для наблюдателя, движущегося в эфире со скоростью v навстречу световому лучу, скорость света должна была бы равняться с + v (эфирный ветер). Такой эфирный ветер должен был бы возникать, в частности, из-за орбитального движения Земли (со скоростью 30 км/сек). Поиски эфирного ветра затруднялись, однако, тем, что уже по теории Френеля эффекты порядка v/c (~10-4 для орбитального движения Земли) должны отсутствовать в широком классе опытов.

Проблема эфира заняла одно из центр, мест в физике после построения Дж. Максвеллом теории электромагнитного поля, в к-рой эфир стал носителем не только световых волн, но и электрич. и магнитных полей. Попытки обнаружения эфирного ветра были сделаны А. Майкельсоном (1881) и А. Майкельсоном и Э. Морли (1887), искавшими эффект порядка v2/c2, и дали отрицат. результат (см. Майкелъсона опыт). Возникла проблема согласования опыта Майкельсона с оптикой и электродинамикой, основанными на представлении об эфире. Наиболее очевидными казались объяснения, базирующиеся на гипотезе полного увлечения эфира движущимися телами. Оптич. и электромагнитные теории, использовавшие эту гипотезу, обсуждали