БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481ированием - любую линию второго порядка в окружность и т. д. Многие свойства остаются неизменными (инвариантными) при О. Так, при параллельном проектировании сохраняется параллельность прямых, отношение отрезков длин параллельных прямых и т. д.

Если каждый элемент множества В является образом элемента множества А, то О. наз. отображением А на множество В. Если каждый элемент из В имеет один и только один прообраз, то О. наз. взаимно однозначным. О. наз. непрерывным, если близкие элементы множества А переходят в близкие элементы множества В. Точнее это означает, что если элементы XL, Х2, . . ., хп, . . сходятся к х, то элементы f(X1), f(x2), . . ., f(Xn), . . . СХОДЯТСЯ к f(x).

Каждой части Т множества А соответствует часть f(T) множества В, состоящая из образов точек этой части; она наз. образом Т. Если все точки части Q множества В являются образами точек из А, то совокупность всех точек х из А таких, что f(x) лежит в Q, наз. полным прообразом Q и обозначается f-1 (Q). При взаимно однозначном О. полный прообраз каждого элемента множества В состоит из одного элемента множества А.

Взаимно однозначное О. имеет обратное О., сопоставляющее элементу у из В его прообраз f-1(y). Взаимно однозначное О. наз. топологическим, или гомеоморфным, если как оно, так и обратное ему О. непрерывны. При гомеоморфных О. сохраняются лишь наиболее общие свойства фигур, как, напр., связность, ориентируемость, размерность и др. Так, квадрат и круг гомеоморфны, но квадрат и куб не гомеоморфны. Свойства фигур, не изменяющиеся при гомеоморфных О., изучаются в топологии. Если в множествах А и В имеются нек-рые соотношения и если эти соотношения сохраняются при О., то О. наз. изоморфным относительно этих соотношений (см. Изоморфизм). В математич. анализе большую роль играют О. одного множества функций на другое. Напр., дифференцирование может рассматриваться как О., при к-ром функции f(x) соответствует функция f'(x). Среди таких О. наиболее простыми являются О., при к-рых сумма функций переходит в сумму, а при умножении функции на число образ её умножается на то же число. Такие О. наз. линейными, их изучают в функциональном анализе. См. также Линейное преобразование, Операторов теория. В ряде случаев в множествах А и В можно ввести координаты, т. е. задавать каждую точку этих множеств системой чисел (x1, . . ., xп) и (y1, . . ., yn). Тогда О. задаётся системой функций уk=fk(x1, . . . , хn), 1=
Дифференцируемые О. поверхностей на поверхности изучаются в дифференциальной геометрии. Имеются свойства, общие всем дифференциально-геометрическим О. Напр., на поверхности S всегда можно указать такую ортогональную сеть (см. Сети линий), к-рой на поверхности S' соответствует также ортогональная сеть. Эта теорема имеет важное значение в картографии.

Наиболее важны след, классы О. поверхностей. Изометрическое отображение, к-рое характеризуется тем, что всякая дуга, лежащая на S, имеет ту же длину, что и образ этой дуги на S'. При таких О. сохраняются площади фигур, а также углы между двумя направлениями, выходящими из одной точки (подробнее см. Дифференциалъная геометрия, Изгибание). Конформное отображение, при к-ром сохраняются углы между всякими двумя направлениями, выходящими из одной точки (см. Конформное отображение). Примером может служить стереографич. проекция. Сферическое отображение поверхности S на сферу состоит в том, что каждой точке М поверхности S ставится в соответствие такая точка М' сферы 2, чтобы нормали к S, проведённые соответственно в точках М и М', были параллельны. Более общим является О. двух произвольных поверхностей по параллельности нормалей. Геодезическое отображение поверхностей, при к-ром любой геодезической линии на поверхности S соответствует на S' линия также геодезическая. Геодезич. О. поверхности постоянной отрицательной кривизны на часть плоскости имеет большое значение для истолкования геометрии Лобачевского. Эквиареальное отображение поверхности на поверхность, при к-ром площади соответствующих друг другу фигур равны.

С точки зрения картографии, каждое из трёх О. кривой поверхности на плоскость - конформное, геодезическое и эквиареальное - имеет свои преимущества; удовлетворить сразу не только всем этим требованиям, но даже и к.-л. двум из них оказывается невозможным.

Лит,: Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967; Бляшке В., Дифференциальная геометрия и геометрические основы теории относительности Эйнштейна, пер. с нем., ч. 1, М.- Л., 1935; Гильберт Д. и Кон-фоссен С., Наглядная геометрия, пер. с нем., 2 изд., М.- Л., 1951.

ОТОБРАЖЕНИЯ ИНФОРМАЦИИ УСТРОЙСТВО, дисплей, устройство вывода данных из ЦВМ, обеспечивающее представление информации (обычно результатов обработки вводимых данных) в форме, удобной для зрительного (визуального) восприятия человеком и принятия им решений (напр., в виде цифро-буквенного текста, плана, таблицы, графика, схемы, чертежа и т. д.). О. и. у. как оконечные устройства ЦВМ широко используются в системах передачи информации, в системах диагностики и машинного обучения, в науч. исследованиях и при конструировании мн. техннч. устройств, в автоматизированных системах управления и проектирования, сигнализации и контроля и т. п. системах "человек и машина". О. и. у. подразделяют на индивидуальные и коллективные.

В качестве индивидуальных применяют О. и. у., осн. элементом к-рых служит электроннолучевая трубка (ЭЛТ) (рис. 1).

Рис. 1. Схема устройства отображения на ЭЛТ: ЦП - центральный процессор вычислительной системы; ЗУ - вспомогательное запоминающее устройство; БУ - блок местного управления; ЭП - электронный прожектор; ОС -отклоняющая система.

Координаты часто воспроизводимых знаков (букв, цифр, обозначений, спец. символов и т. п.) хранятся во вспомогат. запоминающем устройстве; центр, процессор вычислит, системы выдаёт лишь адреса этих знаков, после чего знаки на экране воспроизводятся автоматически. Такое О. и. у. способно воспроизвести на экране текст книжной страницы за 0,02- 0,05 сек. Чтобы изображение на экране не мерцало, его повторно воспроизводят (регенерируют) с частотой 20-50 раз в сек. Обмен информацией с центр, процессором происходит лишь тогда, когда требуется внести изменения в изображение или передать в процессор команды оператора. В таких О. и. у. оператор может, напр., при помощи светового карандаша стирать отд. знаки, строчки и участки текста, заменять элементы схемы, рисунка, может поворачивать (в плоскости экрана) изображение, изменять его масштаб.

Кроме обычных ЭЛТ, в О. и. у. используют знакопечагпающие электроннолучевые трубки, многолучевые трубки для синхронного отображения неск. быстроменяющихся величин, трубки с оптич. окном для совмещения сложного фона (напр., карты местности или чертежа), поступающего с диапроектора, с изображением, воспроизводимым электронным лучом, а также цвешые телевизионные трубки. Гл. недостаток О. и. у. на ЭЛТ - трудность их согласования с ЦВМ, требующего дополнит. оборудования.

Более удобны с точки зрения совместимости с ЦВМ т. н. плазменные панели. Такая панель состоит из трёх стеклянных пластин; средняя имеет отверстия (ячейки), заполненные смесью неона и азота, а на наружные нанесены шины выборки (параллельные полупрозрачные полоски золота) т. о., чтобы каждое отверстие оказалось расположенным между двумя взаимно перпендикулярными полосками. При подаче на шины управляющего напряжения (сигнала) газ в ячейках начинает светиться и это свечение сохраняется после снятия управляющего сигнала (разряд поддерживается постоянным напряжением). Для гашения элемента на выбранную пару шин подаётся сигнал противоположной полярности. Аналогично устроены матричные люминесцентные экраны (средняя пластина покрыта люминофором - точками размером ок. 0,25 мм2). Разрабатывают экраны на светодиодах и жидких кристаллах. Первые основаны на явлении свечения некоторых полупроводников (напр., фосфида и арсенида галия) под действием приложенного к ним напряжения, вторые - на изменении положения молекул в нек-рых искусств, органич. веществах под влиянием электрич. поля. Это ведёт к изменению прозрачности или цвета соответствующих участков экрана.

В О. и. у. коллективного пользования первичное изображение, полученное на промежуточном носителе - люминофоре электроннолучевой трубки, увеличивают и проецируют на экран. Достаточная разрешающая способность и яркость обеспечиваются в таких О. и. у. лишь при сравнительно небольших размерах экрана (пл. порядка 2,5 м2); при больших размерах экрана эти параметры ухудшаются. Заменив люминофор тонкой масляной плёнкой, находящейся под постоянным потенциалом, получают плёночный модулятор света (рис. 2). Под действием электронного луча на плёнке возникает заряд, деформирующий её поверхность,- первичное изображение оказывается рельефным. Свет мощной лампы отбрасывается зеркальными полосками отражателя на первичное изображение; отражаясь от неровностей поверхности масляной плёнки, свет несёт изображение рельефа, к-рое фокусируется объективом и проецируется на экран. Плёночный модулятор света обеспечивает высококачеств. многоцветные изображения на больших экранах (пл. до 200 м2). Перспективно применение термо-пластич. модуляторов света (аналогичных по устройству плёночным, но с первичным носителем в виде предварительно разогретого и приведённого в пластич. состояние материала) и лазерных О. и. у. (аналогичных О. и. у. на ЭЛТ, но с передачей цветного изображения тремя разноцветными лазерными лучами на большой экран) (см. Проекционное телевидение).

Рассмотренные О. и. у. дают двухмерные изображения. Однако в ряде случаев (напр., в системах посадки самолётов, при проектировании корпусов автомобилей и т. п.) предпочтительнее трёхмерная индикация. О. и. у. на электроннолучевой трубке, дополненное рядом устройств, может воспроизводить трёхмерные изображения в аксонометрической (или иной) проекции; невидимые наблюдателю линии стираются, изображение можно поворачивать, чтобы оператор мог осмотреть его с разных сторон. Не менее перспективно использование трёхмерных О. и. у., основанных на голографии. Новые возможности открывает объёмная индикация, при к-рой изображения формируются не на плоскости, а в объёме, заполненном газом (рис. 3). От внешних источников света в газовую среду направляют два луча; каждый из них изменяет энергетич. состояние молекул газа, в точке пересечения лучей возникает флюоресценция (свечение) газа. При быстром перемещении лучей появляется светящийся след, к-рый при многократном повторении воспринимается наблюдателем как законченное изображение.

Рис. 2. Схема устройства отображения с масляным модулятором света: ИС - источник света; К-конденсор; ОТ-отражатель; ОБ - объектив; 3 - зеркало; Э- экран; МП - масляная плёнка; ЭП- электронный прожектор; БУ- блок местного управления; ЦП-центральный процессор вычислительной системы.

Рис. 3. Схема устройства отображения с объёмной индикацией: ИС - источник света; К - конденсор; ОС - отклоняющая система; ЦП - центральный процессор вычислительной системы; ГО - газовый объём; ФТ - флюоресцирующая точка; БУ - блок местного управления.

Лит.: Пул Г., Основные методы и системы индикации, пер. с англ., Л., 1969; В е н д а В. Ф., Средства отображения информации, М., 1969; Темников Ф. Е., Афонин В. А., Дмитриев В. И., Теоретические основы информационной техники, М., 1971; Ч а ч к о А. Г.. Человек за пультом, М., 1974: Da vis S., Computer data displays, Englewood Cliffs (N. Y.), 1969. А. Г. Чачко.

ОТОЛИТЫ (от ото... и греч. lithos - камень), статолиты, твёрдые образования, расположенные на поверхности механорецепторных клеток органа равновесия у ряда беспозвоночных и всех позвоночных животных. Происхождение, размер и строение О. варьируют у разных животных: они могут быть продуктом секреторной деятельности клеток или заносятся извне (напр., у рака О. служат песчинки); О. млекопитающих - обычно удлинённые (дл. до 10 мкм, шир. 1-3 мкм) кристаллы кальцита (СаСО3). Смещени