БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481авшиеся кинопредпринимагелями, влияние антиреалистич. тенденций, голливудских эстетич. норм в выборе планов, композиций мизансцен, схем освещения. Однако лучшие представители О. и. стремились обогащать и совершенствовать своё мастерство, правдиво отражать жизнь, развивать прогрессивные традиции национального изобразит, иск-ва. Большой вклад в О. и. разных периодов развития кинематографа внесли операторы Германии, Франции, США, Италии, Мексики, Японии. Значит, успехов достигли мастера О. и. Польши и др. зарубежных социалистич. стран.

Лит.: Головня А., Свет в искусстве оператора, М., 1945; его же, Мастерство кинооператора, М., 1965; Косматов Л., Операторское мастерство, М., 1962; его ж е, Свет в интерьере, М., 1973; И л ь и н Р. Н., Изобразительные ресурсы экрана, М., 1973. А. Д. Головня.

ОПЕРАТОРЫ в квантовой теории, математич. понятие, широко используемое в математич. аппарате квантовой механики и квантовой теории поля и служащее для сопоставления определённому вектору состояния (или волновой функции) ф др. определённых векторов (функций) ф'. Соотношение между ф и ф' записывается в виде ф' = ^Lф, где ^L - оператор. В квантовой механике физич. величинам (координате, импульсу, моменту количества движения, энергии и т. д.) ставятся в соответствие О. ^L (О. координаты, О. импульса и т. д.), действующие на вектор состояния (или волновую функцию) ф, т. е. на величину, описывающую состояние физич. системы.

Простейшие виды О., действующих на волновую функцию ф(x:) (где x - координата частицы),- О. умножения (напр., О. координаты ^х, ^xф = xф) и О. дифференцирования (напр., О. импульса ^p, ^pф=-ih/(дф/дх) где i - мнимая единица,

h - постоянная Планка). Если ф - вектор, компоненты к-рого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу - матрицу.

В квантовой механике в основном используются линейные операторы. Это означает, что они обладают след, свойством: если ^Lф1 = Ф'1 и ^Lф2 = ф'2 то

^L(с1ф1 + c2ф2) = с1ф'1 + c2ф'2, где C1 и с2 -комплексные числа. Это свойство отражает суперпозиции принцип - один из осн. принципов квантовой механики.

Существ, свойства О. ^L определяются уравнением ^Lфп = Лпфп, где Лn- число. Решения этого уравнения фп наз. собственными функциями (собств. векторами) оператора ^L. Собств. волновые функции (собств. векторы состояния ) описывают в квантовой механике такие состояния, в к-рых данная физич. величина L имеет определённое значение Лn. Числа Лn наз. собственными значениями О. ^L, а их совокупность - спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее фп, имеет решение при любом значении Лn (в определённой области), во втором - решения существуют только при определённых дискретных значениях Лn. Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Напр., О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил - непрерывный, дискретный или смешанный спектр. Дискретные собств. значения О. энергии наз. энергетич. уровнями.

Собств. функции и собств. значения О. физич. величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ, значения, то соответствующие квантовомеханич. О. должны иметь веществ, собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии ф должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) фп О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т. н. самосопряжённых О., или эрмитовых операторов.

С О. можно производить алгебраич. действия. В частности, под произведением О. ^L1 и ^L2 понимается такой О. ^L = ^L1 ^L2, действие к-рого на вектор (функцию) ф даёт ^Lф = ф", если

^L2ф = Ф' и ^L1ф' = ф". Произведение О. в общем случае зависит от порядка сомножителей, т. е. ^L1^L2 не равно ^L2^L1. Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физич. величин, к-рым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физич. величин является равенство ^L1^L2 = ^L2^L1(см. Перестановочные соотношения).

Уравнения квантовой механики могут быть формально записаны точно в том же виде, что и уравнения классич. механики (гейзенберговское представление в квантовой механике), если заменить физич. величины, входящие в уравнения классич. механики, соответствующими им О. Всё различие между квантовой и классич. механикой сведётся тогда к различию алгебр. Поэтому О. в квантовой механике иногда наз. q-числами, в отличие от с-чисел, т. е. обыкновенных чисел, с к-рыми имеет дело классич. механика.

О. можно не только умножать, но и возводить в степень, образовывать из них ряды и рассматривать функции от О. Произведение эрмитовых О. в общем случае не является эрмитовым. В квантовой механике используются и неэрмитовы О., важным классом к-рых являются унитарные операторы. Унитарные О. не меняют норм ("длин") векторов и "углов" между ними. Неизменность нормы вектора состояния даёт возможность интерпретации его компонент как амплитуд вероятности равным образом в исходной и преобразованной функции. Поэтому действием унитарного О. описывается развитие квантовомеханич. системы во времени, а также её смещение как целого в пространстве, поворот, зеркальное отражение и др. Выполняемые унитарными О. преобразования (унитарные преобразования) играют в квантовой механике такую же роль, какую в классич. механике играют канонич. преобразования (см. Механики уравнения канонические).

В квантовой механике применяется также О. комплексного сопряжения, не являющийся линейным. Произведение такого О. на унитарный О. наз. антиунитарным О. Антиунитарные О. описывают преобразование обращения времени и нек-рые др.

В теории квантовых систем, состоящих из тождеств, частиц, широко применяется метод квантования вторичного, в к-ром рассматриваются состояния с неопределённым или переменным числом частиц и вводятся О., действие к-рых на вектор состояния с данным числом частиц приводит к вектору состояния с изменённым на единицу числом частиц (О. рождения и поглощения частиц). О. рождения или поглощения частицы в данной точке х, ^ф(х) формально подобен волновой функции ф(x), как q- и с-числа, отвечающие одной и той же физич. величине соответственно в квантовой и классич. механике. Такие О. образуют квантованные поля, играющие фундаментальную роль в релятивистских квантовых теориях (квантовой электродинамике, теории элементарных частиц; см. Квантовая теория поля).

Лит. см. при статьях Квантовая механика, Квантовая теория поля. В. Б. Берестецкий.

ОПЕРАЦИЙ ИССЛЕДОВАНИЕ, научный метод выработки количественно обоснованных рекомендаций по принятию решений. Важность количеств, фактора в О. и. и целенаправленность вырабатываемых рекомендаций позволяют определить О. и. как теорию принятия оптимальных решений. О. и. способствует превращению искусства принятия решений в научную и притом математич. дисциплину. Термин "О. и." возник в результате буквального перевода амер. выражения operations research, являющегося модификацией англ, operational research, введённого в кон. 30-х гг. 20 в. как условное наименование одного из подразделений британских ВВС, занимавшегося вопросами использования радиолокац. установок в общей системе обороны.

Описание всякой задачи О. и. включает задание компонент (факторов) решения (к-рые можно понимать как его непосредственные последствия; обычно, хотя и необязательно, компоненты решения являются численными переменными), налагаемых на них ограничений (отражающих ограниченность ресурсов) и системы целей. Всякая система компонент решения, удовлетворяющих всем ограничениям, наз. допустимым решение м. Каждой из целей соответствует целевая функция, заданная на множестве допустимых решений, значения к-рой выражают меру осуществления цели. Сущность задачи О. и. состоит в нахождении наиболее целесообразных, оптимальных решений. Поэтому задачи О. и. обычно наз. оптимизационными.

Нек-рые наиболее важные и разработанные задачи О. и. получили назв. м о д е л е й О. и. Они обычно выделяются содержательной терминологией и имеют специфич. методы решения. К их числу относятся транспортная задача, задача размещения, теория надёжности, близкая к ней теория замены оборудования, теория расписаний (наз. также теорией календарного планирования), теория управления запасами и теория сетевого планирования. Одной из моделей О. и. считается массового обслуживания теория, хотя ещё не все её задачи приобрели оптимизационный характер.

Среди задач О. и. выделяются те, в к-рых имеется одна целевая функция, принимающая численные значения. Теория таких задач наз. математическим программированием (или оптимальным программированием). Им противостоят задачи с неск. целевыми функциями или с одной целевой функцией, но принимающей векторные значения или значения ещё более сложной природы. Эти задачи наз. многокритериальными. Они решаются путём сведения (часто условного) к задачам с единств, целевой функцией либо на основе использования игр теории.

Принятие решений происходит на основе информации, поступающей к принимающему решение субъекту. Поэтому задачи О. и. естественно классифицировать по их теоретико-информационным свойствам. Если субъект в ходе принятия решения сохраняет своё информационное состояние, т. е. никакой информации не приобретает и не утрачивает, то принятие решения можно рассматривать как мгновенный акт. Соответствующие задачи О. и. наз. статическими. Напротив, если субъект в ходе принятия решения изменяет своё информационное состояние, получая или теряя информацию, то в такой динамической задаче обычно целесообразно принимать решение поэтапно ("многошаговые решения") или даже развёртывать принятие решения в непрерывный во времени процесс. Значит, часть теории динамич. задач О. и. входит в динамическое программирование.

Соотношение между информационным состоянием субъекта и его истинным (•"физическим") состоянием может быть различным. Если информационное состояние охватывает целое множество истинных состояний (субъект знает, что он находится в одном из состояний этого множества, но более точно определить своё истинное состояние не может), то задача принятия решения наз. неопределённой и решается методами теории игр. Если информационное состояние состоит из неск. истинных состояний, но субъект, кроме того, знает ("априорные") вероятности каждого из истинных состояний, то задача наз. стохастической (вероятностно и) и решается методами стохастического программирования. Наконец, если информационное состояние совпадает с истинным, то задача наз. детерминированной.

При решении детерминированных задач важную роль играет аналитич. вид ограничений и целевой функции. Так, если целевая функция есть линейная форма компонент решения, а ограничения описываются линейными неравенствами, то задача относится к линейному программированию. Остальные детерминированные задачи рассматриваются в нелинейном программировании, в к-ром естественно выделяются выпуклое программирование и квадратичное программирование. Если по условиям задачи компоненты решения могут принимать лишь целые значения, то задачу относят к целочисленному (дискретному) программированию. Семейство задач, зависящих от параметра, иногда объединяют в одну задачу п а р а м е т р и ч е с к о г о программирования. Особым частным случаем детерминированных задач является нахождение минимакса (и мак-симина).

Первоначально О. и. было связано с решением задач воен. содержания, но уже с кон. 40-х гг. сфера его приложений стала охватывать разнообразные стороны человеческой деятельности. О. и. используется для решения как чисто технич. (особенно технологич.), так и технико-экономич. задач, а также за