БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

X. Такие среды наз. мутными средами. При большой концентрации инородных частиц рассеяние на них падающего света по всем направлениям приводит к тому, что мутная среда становится непрозрачной. Если неоднородность среды вызвана присутствием в ней мелкодисперсных коллоидных частиц (см. Коллоидные системы), то среда кажется совершенно прозрачной; однако наблюдение под углами ок. 90" к направлению падающего света обнаруживает свечение среды, обусловленное интенсивным рассеянием света (Тиндаля эффект). К др. классу мутных сред относятся чистые (без инородных включений) вещества, в к-рых изменения п в большом числе микрообъёмов, приводящие к рассеянию света, вызваны флуктуациями плотности среды в результате хаотич. теплового движения её молекул или турбулентностью среды. Интенсивность I света, рассеиваемого непоглощающими диэлектрич. частицами, пропорциональна Л-p, где р - параметр, зависящий от отношения размеров частиц к Л. При рассеянии на тепловых флуктуациях, размеры к-рых много меньше Л, I~Л-4(Рэлея закон). Такая сильная зависимость от X объясняет преимущественное рассеяние более коротких волн; поэтому наблюдаемый цвет дневного неба - голубой, хотя атмосфера Земли освещается солнечным белым светом- совокупностью световых волн различной длины. Для частиц, размеры к-рых >>Л, параметр р близок к 0 и рассеяние определяется геом. эффектами преломления света на поверхностях частиц. I в этом случае не зависит от Л, что и наблюдается при рассеянии света в туманах и облаках - они имеют белый цвет. На изучении рассеяния света неоднородностями в газах, жидкостях и твёрдых телах основаны методы нефелометрии и ультрамикроскопии (см. Ультрамикроскоп), позволяющие определять концентрацию неоднородностей и изучать их природу (а в нефелометрии - и их размеры).

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Ш и ф р и н К. С., Рассеяние света в мутной среде, М.- Л., 1951; В о л ь к е н ш т е й н М. В., Молекулярная оптика, М.- Л., 1951; Шишловскнй А. А., Прикладная физическая оптика, М., 1961; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967. Л. Н. Капорский.

ОПТИКА ТОНКИХ СЛОЁВ, раздел оптики. В О. т. с. изучается прохождение света через один или последовательно через неск. непоглощающих слоев вещества, толщина к-рых соизмерима с длиной световой волны. Специфика О. т. с. заключается в том, что в ней определяющую роль играет интерференция света между частично отражаемыми на верхних и нижних границах слоев световыми волнами. В результате интерференции происходит усиление или ослабление проходящего или отражаемого света, причём этот эффект зависит от вносимой оптической толщиной слоев разности хода лучей, длины волны (или набора длин волн) света, угла его падения и т. д. Тонкие слои могут быть образованы на массивной подложке из стекла, кварца или др. оптич. среды с помощью термич. испарения вещества и его осаждения на поверхность подложки, хим. осаждения, катодного распыления пли хим. реакций материала подложки с выбранным веществом. Для получения таких слоев используют различные окислы: А12О3., (1,59), Si02 (1,46), ТiO2 (2,2- 2,6); фториды: MgF2 (1,38), CaF2 (1,24), LiF (1,35); сульфиды: ZnS (2,35), CdS (2,6); полупроводники Si (3,5), Ge (4,0), а также нек-рые др. соединения. (В скобках указаны преломления показатели веществ.)

Одно из важнейших практич. применений О. т. с. - уменьшение отражательной способности поверхностей оптических деталей (линз, пластин и пр.). Подробно об этом см. в ст. Просветление оптики. Нанося многослойные покрытия из большого (13-17 и более) числа чередующихся слоев с высоким и низким п, изготовляют зеркала с большим отражения коэффициентом, обычно в сравнительно узкой спектральной области, но не только в диапазоне видимого света, а и в УФ и ИК диапазонах (см. Зеркало). Коэфф. отражения таких зеркал (50-99,5%) зависит как от длины волны, так и от угла падения излучения. С помощью многослойных покрытий разделяют падающий свет на прошедший и отражённый практически без потерь на поглощение; на этом принципе созданы эффективные светоделители (полупрозрачные зеркала). Системы из чередующихся слоев с высоким и низким га используют и как интерференционные поляризаторы, отражающие составляющую света, поляризованную перпендикулярно плоскости его падения (последняя проходит через направление светового луча и нормаль к поверхности), и пропускающие параллельно поляризованную составляющую (см. Поляризационные приборы, Поляризация света). Степень поляризации в проходящем свете достигает для многослойных поляризаторов 99%. О. т. с. позволила создать получившие широкое распространение интерференционные светофилътры, полоса пропускания к-рых может быть сделана очень узкой - существующие многослойные светофильтры выделяют из спектральной области шириной в 500 нм интервалы длин волн 0,1-0,15 нм. Тонкие диэлектрич. слои применяют для защиты металлич. зеркал QT коррозии и при исправлении аберраций линз и зеркал (см. Аберрации оптических систем). О. т. с. лежит в основе многих других оптич. устройств, измерит, приборов и спектральных приборов высокой разрешающей способности. Све-точувствит. слои фотокатодов и болометров по б. ч. представляют собой тонкослойные покрытия, эффективность к-рых существенно зависит от их оптич. свойств. О. т. с. широко применяется в лазерах и усилителях света (напр., при изготовлении интерферометров Фабри - Перо; см. Интерферометр), при создании дихроичных зеркал, используемых в цветном телевидении, в интерференционной микроскопии (см. Микроскоп) и т. д. См. также Ньютона кольца, Полосы равного наклона, Полосы равной толщины.

Лит.: Просветление оптики, под ред. И. В. Гребенщикова, М.- Л., 1946; Розенберг Г. В., Оптика тонкослойных покрытий, Л., 1958; Крылова Т. Н., Интерференционные покрытия, Л., 1973. Л. Н. Канарский.

ОПТИКАТОР, прибор для измерения линейных размеров, в к-ром пружинный преобразовательный механизм микрокатора используется в сочетании с оптической системой. В О. вместо стрелочного указателя (в отличие от микрокато-ра) применён так называемый оптич. рычаг, к-рый состоит из осветителя и зеркала, приклеенного к пружине. Луч света, пройдя через отверстие с нитью посредине и отразившись от зеркала в виде "зайчика", передаёт на шкалу изображение нити, к-рое и является указателем. О. обладает всеми положительными качествами микрокатора, кроме того, имеет большие пределы измерения. Первые О. были изготовлены в 40-х гг. в ГДР (г. Зуль). В СССР изготовляют О. с ценой деления 0,1; 0,2; 0,5 и 1 мкм, с пределами измерения соответственно 24 (±12): 50 (±25); 100 (±50) и 250 (± ±125) мкм. Погрешность О. при его вертикальном положении не более 0,5 цены деления в пределах 100 делений шкалы и не более 1 цены деления на всём пределе измерения. О. производят измерения методом сравнения с концевыми мерами или аттестованными деталями. О. обычно снабжаются переставными указателями поля допуска в виде 2 светофильтров, изменяющих на границах допуска окраску "зайчика" в красный или зелёный цвет. При измерениях О. устанавливают на стойке.

В СССР на базе О. выпускаются фотоэлектрич. преобразователи (на шкале дополнительно располагаются фотосопротивления) с ценой деления 0,5; 1,2; 5 мкм, используемые в контрольных автоматах (см. Контроль автоматический). Такие преобразователи могут производить разделение деталей при контроле на большое число групп (до 50). Н. Н. Марков.

ОПТИМАЛЬНАЯ СИСТЕМА, система автоматического управления, обеспечивающая наилучшее (оптимальное) с нек-рой точки зрения функционирование управляемого объекта. Его характеристики и внешние возмущающие воздействия могут изменяться непредвиденным образом, но, как правило, при определенных ограничениях. Наилучшее функционирование системы управления характеризуется т. н. критерием оптимального управления (критерием оптимальности, целевой функцией), к-рый представляет собой величину, определяющую эффективность достижения цели управления и зависящую от изменения во времени или в пространстве координат и параметров системы. Критерием оптимальности могут быть различные технич. и экономич. показатели функционирования объекта: кпд, быстродействие, среднее или максимальное отклонение параметров системы от заданных значений, себестоимость продукции, отд. показатели качества продукции либо обобщённый показатель качества и т. п. Критерий оптимальности может относиться как к переходному, так и к установившемуся процессу, либо и к тому и к др. Различают регулярный и статистич. критерии оптимальности. Первый зависит от регулярных параметров и от координат управляемой и управляющей систем. Второй применяется тогда, когда входные сигналы - случайные функции или (и) нужно учесть случайные возмущения, порождённые отдельными элементами системы. По матем. описанию критерий оптимальности может быть либо функцией конечного числа параметров и координат управляемого процесса, к-рая принимает экстремальное значение при оптимальном функционировании системы, либо функционалом от функции, описывающей закон управления; при этом определяется такой вид этой функции, при к-ром функционал принимает экстремальное значение. Для расчёта О. с. пользуются принципом максимума Понтрягина либо теорией динамич. программирования.

Оптимальное функционирование сложных объектов достигается при использовании самоприспосабливающихся (адаптивных) систем управления, к-рые обладают способностью автоматически изменять в процессе функционирования алгоритм управления, свои характеристики или структуру для сохранения неизменным критерия оптимальности при произвольно изменяющихся параметрах системы и условиях её работы. Поэтому в общем случае О. с. состоит из двух частей: постоянной (неизменной), включающей объект управления и нек-рые элементы управляющей системы, и переменной (изменяемой), объединяющей остальные элементы. См. также Оптимальное управление. М. М. Майзель.

ОПТИМАЛЬНОЕ ПЛАНИРОВАНИЕ, см. Планирование оптимальное.

ОПТИМАЛЬНОЕ ПРОГРАММИРОВАНИЕ, то же, что математическое программирование.

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ, раздел математики, изучающий неклассические вариационные задачи.

Объекты, с к-рыми имеет дело техника, обычно снабжены ч рулями"- с их помощью человек управляет движением. Математически поведение такого объекта описывается нек-рыми уравнениями, куда входят и управляющие параметры, характеризующие положение "рулей". Естественно, возникает вопрос об отыскании наилучшего (оптимального) в том или ином смысле управления движением. Напр., речь может идти о достижении цели движения за минимальное время. Этот вопрос является задачей вариационногоисчисления. В отличие от классических вариационных задач, где управляющие параметры меняются в нек-рой открытой области (без границы), теория О. у. охватывает и тот случай, когда управляющие параметры могут принимать и граничные значения. Последнее обстоятельство особенно существенно с прикладной точки зрения, поскольку при управлении техническим объектом именно положение "руля" "на упоре" часто обеспечивает О. у.

Уже само зарождение (в нач. 50-х гг. 20 в.) О. у. представляет собой яркий пример того, как запросы практики с неизбежностью порождают новые теории. Для новейшей техники и современного высокомеханизированного и автоматизированного производства характерно стремление выбирать наилучшую программу действий, наиболее рационально использовать имеющиеся ресурсы. Именно эти конкретные технич. задачи стимулировали разработку теории О. у., оказавшейся математически очень содержательной и позволившей решить многие задачи, к к-рым классич. методы были неприменимы. Интенсивное развитие теории О. у., в свою очередь, оказалось мощным фактором, способствующим успешному решению научно-технических и народнохозяйственных задач.

Центральным результатом теории О. у. является принцип максимума Понтрягина, дающий общее необходимое условие оптимальности управления. Этот результат и связанные с ним исследования, проведённые Л. С. Понтрягиным и его сотрудниками, послужили исходным пунктом разработки теоретических, вычислительных и прикладных аспектов теории О. у. При решении ряда задач О. у. с успехом используются идеи метода динамическо