БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

энергии в митохондриях" М., 1973; Ленинджер А., Биохимия, пер. с англ., М., 1974. С. А. Остроумов.

ОКИСЛЕНИЕ МЕТАЛЛОВ, реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). В более широком смысле О. м. - реакции, в к-рых атомы теряют электроны и образуются различные соединения, напр, хлориды, сульфиды и т. п. В природе металлы находятся почти исключительно в окисленном состоянии (в виде руд), поэтому их произ-во основано на процессах восстановления различных соединений. Металлы и сплавы, используемые на практике, вследствие воздействия окружающей среды подвергаются постепенному окислению - коррозии. Направление процессов О. м. определяется как термодинамич. фактором - изменением свободной энергии при реакции, так и кинетич. - скоростью её протекания, к-рая в значит, степени зависит от природы продуктов окисления и характера их взаимодействия с металлом. При произ-ве металлургия, продукции О. м. может привести к образованию окалины, потере ценных легирующих элементов и железа. В ряде же случаев проводят преднамеренное О. м. в защитных или декоративных целях (см. Оксидирование).

ОКИСЛЕНИЕ - ВОССТАНОВЛЕНИЕ, окислительно -восстановительные реакции, хим. реакции, сопровождающиеся изменением окислительных чисел атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, кон. 18 в.) окислением наз. только реакции соединения с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений (1920-30) оказалось возможным широко обобщить понятие О.-в. и распространить его на реакции, в к-рых кислород не участвует. Согласно электронной теории, окислением наз. отдача электронов атомом, молекулой или ионом: Zn -2e = Zn2+.

Восстановлением наз. присоединение электронов атомом, молекулой или ионом: Сl2 + 2ё = 2С1-.

Окислителями наз. нейтральный атом, молекула или ион, принимающие электроны (во втором примере молекула хлора СЬ), восстановителями - нейтральный атом, молекула или ион, отдающие электроны (в первом примере- атом Zn). Окисление и восстановление - взаимосвязанные процессы, к-рые всегда протекают одновременно. Когда одно вещество окисляется, то другое восстанавливается, и наоборот. Так, приведённые выше частные реакции окисления и восстановления составляют единый процесс О.-в.:

Zn + Cl2 = ZnCl2.

Здесь Zn окисляется до Zn2+, а СЬ восстанавливается до 2С1-.

В химии окислительно-восстановит. реакции принадлежат к числу наиболее распространённых. Напр., на них, как правило, основано получение простых веществ (металлов и неметаллов)

СuО + Н2 =Сu + Н2О, 2КВr + Сl2 = Вr2 + 2KCl. В основе технич. произ-ва таких важнейших хим. продуктов, как аммиак, азотная кислота, серная кислота, процессов сжигания топлива и горения также лежат реакции О.-в. В гальванич. элементах (см. Химические источники тока) возникновение электродвижущей силы обусловлено протеканием реакции О.-в. При проведении электролиза на аноде происходит электрохим. окисление, на катоде - электрохим. восстановление. Например, при произ-ве хлора электролизом раствора NaCl на аноде идёт реакция С1--1e = 1/2Сl2 (окисление аниона С1-), на катоде Н+ + 1e = 1/2H2 (восстановление катиона Н+). Коррозия металлов также связана с реакциями О.-в. и заключается в окислении металлов.

Дыхание, усвоение растениями углекислого газа с выделением кислорода (см. Фотосинтез), обмен веществ и др. биологически важные явления представляют собой реакции О.-в. (см. Окисление биологическое).

При составлении уравнений реакций О.-в. основная трудность заключается в подборе коэффициентов, особенно для реакций с участием соединений, в к-рых хим. связь носит не ионный, а ковалентный характер. В этом случае полезны понятия электроотрицательности и окислительного числа (степени окислени я). Электроотрицательность - способность атома в молекуле притягивать и удерживать около себя электроны. Степень окисления - такой заряд, к-рый возник бы на атоме в молекуле, если бы каждая пара электронов, связывающая его с др. атомами, была полностью смещена к более электроотрицательному атому (см.Валентность). Нахождение степени окисления атома в молекуле основано на том, что молекула в целом должна быть электрически нейтральной. При этом учитывается, что степень окисления атомов нек-рых элементов в соединениях всегда постоянна (щелочные металлы + 1, щёлочноземельные металлы и цинк + 2, алюминий + 3, кислород, кроме перекисей, -2 и т. д.). Степень окисления атома в простых веществах равна нулю, а одноатомного иона в ионном соединении равна заряду этого иона. Напр., рассчитаем степень окисления атома Сг в соединении К2Сr2О7. Пользуясь постоянными значениями степеней окисления для К и О, имеем 2-(+1) + 7- (-2) = -12. Следовательно, степень окисления одного атома Сг (чтобы сохранить электронейтральность молекулы) равна +6. На основе введённых понятий можно дать другое определение О.-в.: окислением наз. увеличение степени окисления, восстановлением наз. понижение степени окисления. Восстановителями являются почти все металлы в свободном состоянии, отрицательно заряженные ионы неметаллов (S2--2e = So), положительно заряженные ионы металлов в низшей степени окисления (Sn2+ -2e = Sn4+), сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления. В пром-сти и технике

широко используются такие восстановители, как углерод и окись углерода (восстановление металлов из окислов) ZnO + С = Zn + CO, FeO + СО = Fe + СО2, сульфит натрия Na2SO3 и гидросульфит натрия NaHSO3 - в фотографии и красильном деле, металлич. натрий и свободный водород - для получения чистых металлов

TiCl4 + 4Na = Ti + 4NaCI, GeO2 + 2H2 = Ge + 2H2O.

Окислителями могут быть нейтральные атомы неметаллов (в особенности галогенов и кислорода), положительно заряженные ионы металлов в высшей степени окисления (Sn4+ + 2ё = Sn2+), сложные ионы и молекулы, содержащие атомы элементов в более высокой степени окисления (МО3, МnО4, СrО3). Пром. значение как окислители имеют: кислород (особенно в металлургии), озон, хромовая и двухромовая кислоты и их соли, азотная к-та, перекись водорода, перманганат калия, хлорная известь и др. Самый сильный окислитель - электрич. ток (окисление происходит на аноде).

Для подбора коэффициентов в уравнениях реакций О.-в. служит общее правило: число электронов, отданных восстановителем, должно равняться числу электронов, принятых окислителем. Применяют обычно два метода подбора коэффициентов: метод электронного баланса и электронно-ионный метод.

В методе электронного баланса подсчёт числа принятых и отданных электронов производят на основании значений степеней окисления элементов до и после реакции. Напр.,
[1824-1.jpg]

Таким образом, С1 является окислителем, а О - восстановителем. Составляют частные реакции окисления и восстановления:
[1824-2.jpg]

В соответствии с приведённым выше правилом числа отданных и принятых электронов уравнивают. Полученные величины подставляют в исходное уравнение:

2КС1O3 = 2КС1 + ЗО3,. В электронно-ионном методе схему реакции записывают в соответствии с общими правилами составления ионных реакций, т. е. сильные электролиты записывают в виде ионов, а неэлектролиты, слабые электролиты, газы и осадки - в виде молекул. Не изменяющиеся в результате реакции ионы в такую схему не входят. Напр.,
[1824-3.jpg]

в ионном виде:
[1824-4.jpg]

Рассчитав степени окисления, определяют окислитель и восстановитель и составляют частные реакции окисления и восстановления:
[1824-5.jpg]

Во втором уравнении, перед тем как записать переход электронов, необходимо составить "материальный" баланс, т. к. в левой части уравнения есть атомы О, а в правой их нет. Избыточные атомы О связываются в молекулы воды ионами Н+, присутствующими в сфере реакции (кислая cреда):

МnО4-, + 8Н+ + 5e = Мn2+ + 4Н2О. Далее, как и в первом методе, находят коэффициенты-множители к частным уравнениям для достижения электронного баланса (в приведённом примере 5 и 2 соответственно). Окончат, уравнение имеет вид:

2МnО4-+10I- + 16Н+ = 5I2 + 2Мn2++ 8Н2О. Полученные коэффициенты подставляют в исходное уравнение:
[1824-6.jpg]

Аналогично составляют и уравнения реакций О.-в. в щелочной среде (вместо ионов Н+ в частных уравнениях фигурируют ионы ОН-). Т. о., в уравнивании реакций по второму методу учитывают характер реакционной среды (кислая или щелочная либо нейтральная), к-рая сильно влияет и на направление реакции О.-в. и на продукты, получаемые в результате реакции. Напр., равновесие окислительно-восстановит. реакции

в кислой среде смещено влево, а в щелочной - вправо.

См. также Окисление металлов, Восстановление металлов.

Лит.: Кудрявцев А. А., Составление химических уравнений, М., 1968; Химия. Курс для средней школы, пер. с англ., 2 изд., М., 1972, гл. 12; Химия. Пособие для преподавателей средней школы, пер. с англ., ч. 1, М., 1973, гл. 12. В. К. Бельский.  

ОКИСЛЕНИЯ СТЕПЕНЬ, то же, что окислительное число.

ОКИСЛИТЕЛЬНО - ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ в организ-м е, биохимич. процессы, при к-рых происходит перенос электрона или атома водорода (иногда с сопровождающими его атомами или группами) от одной молекулы (окисляемой) к другой (восстанавливаемой). О.-в. р. катализируются ферментами оксидоредуктазами. Энергия, выделяющаяся при нек-рых О.-в. р., запасается в хим. связях молекул адено-зинтрифосфорной кислоты (АТФ) и др. макроэргических соединений. К О.-в. р. относятся реакции трикарбоновых кислот цикла, реакции переноса электронов при дыхании, фотосинтезе, брожении и гликолизе, реакции окисления и синтеза жирных к-т и мн. др. процессы, протекающие в любой живой клетке. См. Окисление биологическое.

ОКИСЛИТЕЛЬНО - ВОССТАНОВИТЕЛЬНЫЙ ПОТЕНЦИАЛ, равновесный электродный потенциал, характеризующий данную электролитич. среду. О.-в. п. при постоянной темп-ре зависит только от состава среды и может быть сообщён ею погружённому в неё электронному проводнику (электроду), если между средой и электродом не нарушен электронный обмен. О.-в. п. устойчив, если среда содержит заметные количества окислителя и восстановителя (см. Окисление-восстановление), причём первый есть продукт окисления второго. Простейший пример - ионы окисного и закисного железа: Fе3+-ионы могут захватывать из металла электроны, превращаясь в Fе2+-ионы, способные к обратной реакции; потенциал, при к-ром эти реакции динамически уравновешивают друг друга, и есть О.-в. п. Чем сильнее окислительная способность среды, тем он выше. Величины О.-в. п. используются при решении ряда задач в элекя-ро-, био- и аналитич. химии. Как и величины нормального потенциала, они отсчитываются от условного нуля (потенциала нормального водородного электрода).

ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, осуществляющийся в живых клетках синтез молекул аденозинтрифосфорной к-ты (АТФ) из аденозиндифосфорной (АДФ) и фосфорной к-т за счёт энергии окисления молекул органич. веществ (субстратов). В результате О. ф. в клетках накапливается АТФ - важнейшее макроэргическое соединение, расходуемое затем на обеспечение энергией различных процессов жизнедеятельности. Осн. субстраты О. ф. - органич. кислоты, образующиеся в трикарбоновых кислот цикле.

Упрощённая схема цепи дыхательных ферментов, локализованных в митохондриях. Перенос электронов по цепи на трёх этапах (т. н. пунктах сопряжения) сопровождается запасанием выделяющейся энергии, т. е. синтезом АТФ из АДФ и фосфата (показано толстыми стрелками).

О. ф. было открыто в 1930 сов. биохимиком В. А. Энгельгардтом. В 1939 В. А. Белицер и Е. Т. Цыбакова показали, что О. ф. сопряжено с переносом электронов по цепи дыхательных ферментов, встроенных (как было установлено позднее) во внутр. мембрану митохондрий. Электроны поступают в дыхат. цепь от восстановленного никотинамидадениндинуклеотида (НАД-Н) или никотинамидадениндинуклеотидфосфата (НАДФ-Н) и через кофермент Q (см. схему) последовательно передаются от соединений с более отрицательным окислительно-восстановит. потенциалом к соединениям с более положительным потенциалом.