БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481от долей до десятков тысяч мксек. Они имеют один или несколько выходов с различными т (многоотводные Л. з.), и т может быть постоянным либо зависеть от частоты сигнала (дисперсионные Л. з.). Разработаны также Л. з. с регулировкой т (переменные Л. з.), с подстраиваемым т (магнитоупругие Л. з.), с малым температурным коэффициентом г (термостабильные Л. з.), с внутренним усилением сигнала (активные Л. з. с фонон- фотонным или фонон-магнонным взаимодействием; см. Квазичастицы).

Для получения малых т (доли мксек) используются электрич. линии с распре- дел. параметрами - проводные линии, полосковые линии, коаксиальные кабели (особенно с внешним спиральным проводником), радиоволноводы и др. При большой длине линии (неск. десятков метров) затухание и дисперсия волн в ней, связанные с электрич. потерями, искажают форму передаваемого сигнала. Полоса пропускания таких Л. з. не превышает 10 Мгц. Большее х (порядка 0,1 - 20 мксек) получается в электрич. искусственной линии с сосредоточ. постоянными, представляющей собой цепочку звеньев, состоящих из катушек индуктивности и конденсаторов. В такой линии х зависит от числа звеньев, схемы соединения катушек индуктивности и конденсаторов в отд. звене, значений индуктивности и ёмкости.

Для получения т порядка 10 мксек - 10 мсек применяют ультразвуковые Л. з. (УЛЗ). В них подводимые электрич. сигналы вначале преобразуются в ультразвуковые с помощью пьезоэлектрич. или магнитнострикционного преобразования (см. Электроакустические преобразователи) и через спец. согласующие слои (из индия, эпоксидных смол, клеёв и др.) передаются в звукрпровод. Зву- копроводы могут быть объёмные (в виде многогранников), волноводные (из ленты или проволоки, обычно свёрнутой в спираль) и многоотводные (бруски из пьезо- активных материалов с нанесёнными на них электродами). В звукопроводе сигналы распространяются со скоростью приблизительно в 105 раз меньшей скорости распространения электрических сигналов и с помощью выходного преобразователя, аналогичного входному, преобразуются в электрические. В качестве звукопроводов применяются спец. сталь, магниево-алюминиевые сплавы, монокристаллы хлористого натрия и калия, бромистого калия и др., плавленый кварц и т. д. Для получения больших т: в малых объёмах звукопровод часто изготавливают в виде многогранника (объёмный звукопровод), в к-ром длина пути ультразвуковых волн значительно увеличивается из-за многократного внутреннего отражения волн от стенок.

Наиболее распространены разнообразные электрич. Л. з. с сосредоточ. параметрами, отд. типы волноводных УЛЗ и УЛЗ с объёмными звукопроводами, особенно с т = 64 мксек для цветных телевизоров.

Наилучшие параметры имеют УЛЗ с объёмными звукопроводами из монокристаллов или плавленого кварца (t порядка 1-5 мсек, рабочие частоты 20- 60 Мгц, полоса пропускания 5-15 Мгц, затухание сигнала порядка 40-70 дб, уровень ложных сигналов 35-40 дб).

Лит..* Э в е л е т Д ж., Обзор ультразвуковых линий задержки, работающих на частотах ниже 100 Мгц, "Труды Института инженеров по электротехнике и радиоэлектронике", 1965, т. 53, № 10; М э з о н У., Ультразвуковые линии задержки с многократными отражениями, в кн.; Физическая акустика, т. 1, ч. А, М., 1966; Мэй Д., Волноводные ультразвуковые линии задержки, там же. Е. И. Каменский, В. М. Родионов.

ЛИНИЯ ПЕРЕМЕНЫ ДАТЫ, условная линия, проведённая на поверхности земного шара для разграничения мест, имеющих при одинаковом показании часов календарные даты, разнящиеся на один день. Л. п. д. проведена в большей части по меридиану 180° долготы так, что она нигде не проходит по суше (см. карту при ст. Поясное время). К В. от неё календарное число на 1 день меньше, чем к 3. Л. п. д. служит для правильного счёта дней месяца при путешествиях. Путешественник, движущийся на В., проходит пункты, где часы, идущие по местному (или поясному) времени, имеют всё большее показание по сравнению с местным (поясным) временем точки отправления. Постепенно переводя стрелки своих часов вперёд, к концу кругосветного путешествия путешественник насчитывает лишние сутки. При кругосветном путешествии с В. на 3.- наоборот, теряет одни сутки. Во избежание этой ошибки на корабле или самолёте, пересекающем Л. п. д., двигаясь с 3. на В., в счёте календарных дат возвращаются на 1 сут назад; напр., подойдя к Л. п. д. в 10 ч 2 мая, после её пересечения считают 10 ч 1 мая. При движении с В. на 3. к календарной дате прибавляют 1 сут, так что, подойдя к Л. п. д. с В. в 10 ч 2 мая, после её пересечения считают 10 ч 3 мая.

ЛИНИЯ ПОЛОЖЕНИЯ в навигации и геодезии, линия, во всех точках к-рой та или иная величина, измеренная по наблюдениям для определения положения наблюдателя на земной поверхности, имеет то же значение, что и в точке наблюдений. Такими величинами могут быть: расстояние между опорной и определяемой точками (Л. п.- окружность); высота небесного светила в нек-рый момент времени (Л. п.- также окружность); азимут направления с опорной точки на определяемую (Л. п. - ортодромия) или направления с определяемой точки на опорную (Л. п.- сфе- рич. кривая 4-го порядка). Пересечение двух (или более) Л. п., проложенных на карте, позволяет определить местоположение наблюдателя. См. также Позиционная линия.

ЛИНИЯ СВЯЗИ, совокупность технич. устройств и физич. среды, обеспечивающая распространение сигналов от передатчика к приёмнику. Л. с. является составной частью канала связи (канала передачи). Иногда в состав канала связи включается неск. Л. с. (на различных участках протяжённого канала связи используются кабельные, радиорелейные и др. Л. с.). Чаще одна и та же Л. с. применяется для передачи сигналов, принадлежащих неск. каналам связи (см. Линии связи уплотнение). В зависимости от характера сигналов, используемых для передачи сообщений, различают элект- рич., звуковые (акустич.) и оптич. Л. с. На ранних этапах развития электрич. связи физич. средой служила пара проводов, соединявшая передатчик и приёмник (проводная связь). Позже, с появлением систем беспроволочной связи (радиосвязи), Л. с. стали определять как совокупность передающей, приёмной антенн и среды, в к-рой происходит распространение радиоволн. Осн. характеристика таких Л. с.- диапазон рабочих частот, обеспечивающих передачу сигналов с допустимым ослаблением. По Л. с. с применением стальных проводов можно передавать сигналы с частотами до 25- 30 кгц, по возд. Л. с. с применением проводов из цветных металлов - до 140- 150 кгц, по симметричному кабелю - до 500-550 кгц, по коаксиальному кабелю - до 12-15 Мгц; магистральные коротковолновые Л. с. работают в диапазоне частот 3-30 Мгц, волноводные - на частотах неск. сотен Мгц и десятков Ггц и т. д.

Применение оптич. и акустич. Л. с. ограничено гл. обр. сильным поглощением оптич. и акустич. волн средой, в к-рой они распространяются (см. Звукоподводная связь и Оптическая связь).

Лит.: Куликов В. В., Современные системы беспроводной дальней связи, М., 1968; Калашников Н. И., Системы связи через искусственные спутники Земли, М., 1969; Назаров М. В., Кувшинов Б. И., Попов О. В., Теория передачи сигналов, М., 1970; Дальняя связь, под ред. А. М. Зингеренко, М., 1970. М. В. Назаров.

ЛИНИЯ УЗЛОВ в астрономии, прямая, по к-рой плоскость орбиты небесного тела пересекает осн. плоскость, проведённую через центральное тело. В качестве осн. плоскости выбирают при изучении движения планет, комет и др. тел Солнечной системы плоскость эклиптики; при изучении движения Луны и искусств, спутников Земли - обычно плоскость экватора Земли и т. п. Точки пересечения Л. у. с небесной сферой, центр к-рой расположен в центральном теле, наз. узлами орбиты.

ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ (ЛЭП), сооружение, состоящее из проводов и вспомогат. устройств, предназначенное для передачи или распределения электрич. энергии. ЛЭП, являясь осн. звеном энергосистемы, вместе с электрич. подстанциями образует электрические сети.

Одна из первых опытных ЛЭП (постоянного тока) напряжением 1,5-2 кв Мисбах-Мюнхен (протяжённостью 57 км ) была сооружена в 1882 франц. учёным М. Депре. В 1891 впервые в мире была осуществлена электропередача трёхфазным переменным током на 170 км по ЛЭП Лауфен - Франкфурт, спроектированной и построенной М. О. Доливо-Доб- роволъским. ЛЭП работала при напряжении 15 кв, передаваемая мощность 230 ква, кпд ок. 75%. Первые кабельные линии (подземные, радиус действия - 1 км, напряжение - 2 кв) в России появились в кон. 70-х гг. 19 в.; электроэнергия, поступавшая в кабельную сеть, использовалась гл. обр. для освещения частных домов. В начале 20 в. в связи с электрификацией пром-сти и общим повышением уровня потребления электроэнергии появились кабельные линии напряжением 6,6, 20 и 35 кв; в 1922 была пущена первая линия на НОкв (Каширская ГРЭС - Москва). Быстрое развитие и совершенствование ЛЭП обусловлены созданием развитых электрич. сетей и объединением их в электроэнергетич. системы. Различают воздушные ЛЭП, провода к-рых подвешены над землёй или над водой, и подземные (подводные) ЛЭП, в к-рых используются гл. обр. силовые кабели.

По воздушным ЛЭП электрич. энергия передаётся на значит, расстояния по проводам, прикреплённым к опорам (столбам) с помощью изоляторов. Воздушные ЛЭП являются одним из осн. звеньев совр. энергосистем. Напряжение в линии зависит от её протяжённости и передаваемой по ней мощности. Для воздушных ЛЭП применяют неизолированные провода (однопроволочные, многопроволочные и полые) из меди, алюминия, сталеалюми- ния, реже стальные (гл. обр. при электрификации сел. местностей). Важнейшие характеристики воздушных ЛЭП: / - длина пролёта линии (расстояние между соседними опорами); f - наибольшая стрела провеса провода в пролёте; h - наименьшее (габаритное) допустимое расстояние от низшей точки провода до земли; \ - длина гирлянды изоляторов; а - расстояние между соседними проводами (фазами) линии; Н - полная высота опоры. Конструктивные параметры воздушной ЛЭП зависят от номинального напряжения линии, от рельефа и клима- тич. условий местности, а также от тех- нико-экономич. требований.

Допустимое расстояние от низшей точки'.провода до земли составляет в ненаселённой местности 5-7 м, а в населённой 6-8 м.

На воздушных ЛЭП применяют различные по конструкции опоры (см. Опоры линий электропередачи). Провода воздушных ЛЭП должны обладать хорошей проводимостью, механич. прочностью, стойкостью против атм. и химич. воздействий (см. Провод для воздушных линий электропередачи). Для защиты воздушных ЛЭП от атм. перенапряжений, возникающих при грозовых разрядах в линию или вблизи неё, применяют грозоза- щитные тросы или разрядники, к-рые устанавливают на ЛЭП с напряжением до 35 кв (см. Защита электрической сети).

Для воздушных ЛЭП (переменного тока) в СССР принята след, шкала напряжений: 35, 110, 150, 220, 330, 400, 500 и 750 кв. Напряжение 35 кв широко используется для создания центров питания электрич. сетей (6 и 10 кв); общая протяжённость ЛЭП на 35 кв к 1972 составляла 189 тыс. км. Распределит, сети большинства энергосистем имеют напряжение 110 кв; протяжённость ЛЭП 110 кв - 197 тыс. км. Напряжение 150 кв используется в распределит, сетях энергосистемы Днепроэнерго и примыкающих к ней районов соседних энергосистем - Киевской, Харьковской и Одесской, а также частично в Кольской энергосистеме; общая протяжённость ЛЭП 150 кв - 6,2 тыс. км. ЛЭП протяжённостью порядка 100 км сооружают на напряжение 220-330 кв; их общая длина ок. 70 тыс. км. Напряжение 400 кв в 1972 использовалось только в Объединённой энергосистеме (ОЭС) Юга для связи с энергосистемами стран - членов СЭВ. ЛЭП с напряжением 500 кв сооружают гл. обр. для передачи электроэнергии на большие расстояния (св. 100 км); общая протяжённость ЛЭП 400-500 кв - ок. 15 тыс. км. В 1972 на напряжении 750 кв действовала только одна опытная ЛЭП Конаковская ГРЭС - Москва; первая пром. передача 750 кв сооружается в ОЭС Юга. Развитие сетей с напряжением 750 кв приведёт к превращению сети 330 кв в распределительную. Примером крупнейшей ЛЭП может служить ЛЭП 500 кв Волжская ГЭС им. 22-го съезда КПСС - Москва общей протяжённостью 2060 км (в одно- цепном исчислении). За рубежом одна из крупнейших ЛЭП - электропередача 500 кв (переменного тока) между энергоси