БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481р.), запаянную в ампулу. Соотношение количеств Be и, напр., Ra ~ 1/5 (по весу). Их мощность определяется допустимым количеством -активного препарата. Обычно активность <=10 кюри, что соответствует испусканию ~ 107-108 нейтронов в 1 сек(см.табл.). H. и. со смесью Ra + Be и Am +Be являются одновременно источниками интенсивного -излучения (104-105-вантов на 1 нейтрон). H. и. со смесью Po + Be и Pu + Be испускают только 1 -квант на 1 нейтрон.

В случае фотонейтронного ампульного источника ампула содержит полый цилиндр или шар из

Be или с тяжёлой водой D2O, внутри к-рого размещается источник -излучения. Энергия -квантов должна быть выше пороговой энергии фоторасщепления ядер D или Be (см. Фотоядерные реакции). Недостаток такого H. и.- интенсивное -излучение; применяется в тех случаях, когда нужно простыми средствами получить моноэнергетич. нейтроны. В ампульных H. и. используется также спонтанное деление тяжёлых ядер (см. Ядра атомного деление).

После появления ускорителей заряженных частиц для получения нейтронов стали использоваться реакции (, n) и (d, n) на лёгких ядрах, а также реакции (d, pn). B спец. ускорительных трубках протоны и дейтроны ускоряются в электрич. поле, создаваемом напряжением ~ 105 - 107 в. Такие нейтронные генераторы разнообразны по размерам и характеристикам (см. рис.). Нек-рые из них размещаются на площади 50-100м2 и обладают мощностью ~ 1012- 1013 нейтронов в 1 сек (энергию можно варьировать от 105 до 107 эв). Существуют и миниатюрные ускорительные трубки (диаметр ~ 25-30 мм), испускающие 107 - 108 нейтронов в 1 сек, к-рые используются в нейтронном каротаже.

Для получения нейтронов с энергиями 2-15 Мэв наиболее употребительны реакции D (d, n)3Не и T(d, n)4He, мишенью служит гидрид металла (обычно Zr или Ti) с дейтерием или тритием. В реакции D + d значительный выход нейтронов наблюдается уже при энергии дейтронов ~50 кэв. Энергия нейтронов при этом ~ 2 Мэв и растёт с ростом энергии протонов. Для нейтронов с энергией 13-20 Мэв предпочтительнее реакция T + d, дающая больший выход нейтронов. Напр., при энергии дейтронов 200 кэв из толстой тритиево-циркониевой мишени вылетают нейтроны с энергией ~ 14 Мэв в количестве 108 в 1 сек на 1 мкк дейтронов.

Реакция (, n) на ядрах 7Li и др. удобна для получения моноэнергетич. нейтронов в широком диапазоне энергий. Она обычно используется в электроста-



Характеристики наиболее распространённых ампульных нейтронных источников.





Ядерная реакция

Период полураспада

Число нейтронов в 1 сек на 1 кюри

Энергия нейтронов в Мэв





Реакция (,n)





Сплошной





Ra+Be

1620 лет

107

спектр от 0,1





Rn+Be

3.8 сут



до 12





Ро+Ве

139 сут

106

с максимумом





Pu +Be

24 тыс. лет



в области





Am +Be

470 лет



3-5





Реакция (, n)





0,12





Ra+D20

1620 лет



0,83





MsTh + Be

6,7 года



0,20





MsTh +D2O






0,62





140La + Be

40 ч

104-105

0,15





140La+D2O






0,024





124Sb+Be

60 сут



0,13





72Ca+D2O

14,1 ч



0,83





24Na+Be

14,8 ч



0,22





24Na+ D2O












Спонтанное деление



Число нейтронов на 1 мг

Сплошной спектр 0,1-12





236pu

2,9 года

26







240Pu

6,6-103 лет

1,1

с максимумом в области 1,5





244 Cm

18,4 года

9-103







252Cf

2,6 года

2,7-109






















Нейтронные генераторы.

тических ускорителях. Для получения нейтронов более высоких энергий (~ 108 эв) используются реакции (, n) и (d, рn) на пучках протонов и дейтронов высоких энергий. Реакция (, n) осуществляется за счёт непосредственного выбивания нейтрона из ядра (без промежуточной стадии возбуждения ядра), а также за счёт перезарядки летящего нуклона в поле ядра. Нейтроны вылетают в этом случае преимущественно вперёд (по направлению протонного пучка), они монохроматичны при фиксированном угле вылета. Реакция (d, рn) (развал дейтрона в поле ядра) приводит к генерации нейтронов с энергией, равной 1/2 энергии дейтрона.

В качестве H. и. используются также электронные ускорители. Интенсивные пучки быстрых электронов направляются на толстые мишени из тяжёлых элементов (Pb, U). Возникающие тормозные --кванты (см. Тормозное излучение) вызывают реакцию (-, n) или деление ядер, сопровождающееся испусканием нейтронов. Все нейтронные генераторы могут работать как в непрерывном, так и импульсном режимах.

Самые мощные источники нейтронов- ядерные реакторы. Нейтронный пучок, выведенный из реактора, содержит нейтроны с энергиями от долей эв до 10- 12 Мэв. В мощных реакторах плотность потока нейтронов в центре активной зоны реактора достигает 1015 нейтронов в 1 сек с 1 см2 (при непрерывном режиме работы). Импульсные реакторы, работающие в режиме коротких вспышек, создают более высокую плотность потока нейтронов, напр, импульсный реактор на быстрых нейтронах в Объединённом ин-те ядерных исследований (ИБР) имеет в момент вспышки в центре активной зоны 1020 нейтронов в 1 сек с 1 см2.

Лит.: Власов H. А., Нейтроны, 2 изд., M., 1971; Портативные генераторы нейтронов в ядерной геофизике, под ред. С. И. Савосина, M., 1962.

Б. Г. Ерозолимский.


НЕЙТРОННЫЙ КАРОТАЖ, метод геофизических исследований, основанный на взаимодействии нейтронов с веществом горных пород. В скважину опускают толстостенную стальную гильзу, содержащую нейтронный источник и детектор, регистрирующий вторичное излучение. Последнее возникает в результате взаимодействия нейтронов с атомными ядрами породы (см. Нейтронные детекторы). Между источником и детектором устанавливается фильтр из парафина, Pb или Bi, препятствующий прямому попаданию нейтронов из источника в детектор. Сигналы детектора, усиленные я сформированные с помощью электронных устройств, передаются по кабелю наверх для регистрации и анализа. Перемещая гильзу вдоль скважины (рис.), записывают каротажную диаграмму - зависимость скорости счёта сигналов or глубины. H. к. был впервые осуществлён в США (Б. M. Понтекорво, 1941), в СССР развитие H. к. связано с именами Б. Б. Лапука и Г. H. Флёрова.

Существует ок. 10 вариантов H. к., отличающихся типом нейтронного источника, видом вторичного излучения, а также характером получаемой информации. В случае нейтрон-нейтронного каротажа регистрируются тепловые нейгроны, образующиеся в результате замедления в горной породе быстрых нейтронов источника (см. Замедление нейтронов). При нейтронном -каротаже регистрируются --кванты, возникающие при захвате медленных нейтронов ядрами (см. Медленные нейтроны). В этих вариантах H. к. с источником непрерывного действия определяется относит, количество водорода в пластах. T. к. водород - наиболее эффективный замедлитель нейтронов, то в породах с порами, заполненными водой или нефтью, нейтроны замедляются уже на небольших расстояниях от источника. Напр., в песчанике с 20%-ной пористостью расстояние, в к-ром ок. 60% нейтронов источника (с энергией 5 Мэв) становятся тепловыми,- порядка неск. см. Число тепловых нейтронов (или -квантов радиационного захвата), достигающих при этом детектора, невелико, т. к. расстояние до него существенно больше (30-50 см).

С уменьшением содержания водорода в пласте длина замедления растёт, нейтроны становятся тепловыми в области, более близкой к детектору, и число его отсчётов увеличивается. T. о., минимумы на каротажной диаграмме соответствуют пластам с повыш. содержанием водорода.

Кроме пористых пластов (песчаника, известняка) с водой или нефтью, диаграммы H. к. дают возможность выделить более плотные пласты, границы пластов, глинистые прослойки, а также границы между жидкостью и газом, что даёт возможность применять H. к. при поисках месторождений газа.

H. к. с источником непрерывного действия не даёт, однако, возможности надёжно отличать пласты, насыщенные водой и нефтью, т. к. они как замедлители нейтронов неразличимы. Для этой цели эффективнее оказался H. к. с импульсным источником (импульсный H. к.). Пластовая вода обычно содержит минеральные соли, напр. NaCl, в то время как в нефти они отсутствуют. Из-за поглощения нейтронов в Cl время жизни тепловых нейтронов в пласте, содержащем воду, меньше, чем в нефтяном пласте. В импульсном H. к. нейтроны испускаются в течение коротких интервалов времени - от 1 до 10 мксек, а регистрируются лишь те сигналы от детектора, к-рые приходят через время t> после нейтронного импульса. При этом число регистрируемых сигналов будет зависеть от . B пласте, содержащем воду, для к-рого . невелико, к моменту t остаётся мало нейтронов и интенсивность регистрации мала. В пласте же, насыщенном нефтью, больше и нейтронов остаётся больше. В районах с сильной минерализацией пластовых вод (200 г NaCl на 1 л) достигаются десятикратные различия в показателях прибора против нефте-и водонасыщенных участков пласта. Импульсный H. к. получил распространение после создания малогабаритных импульсных нейтронных генераторов.

В H. к. с регистрацией -квантов применяются сцинтилляционный счётчик и полупроводниковые детекторы, обладающие высокой разрешающей способностью. Измерение спектра -квантов радиационного захвата позволяет осущрст-влять элементный анализ горных пород. Используя при этом импульсный H. к., удаётся определять и спектр -лучей, возникающих при неупругом рассеянии нейтронов на ядрах. Такой вариант H. к. сулит возможность выделения нефтеносных пластов по содержанию С, т. е. независимо от наличия солей в пластовых водах.

В СССР H. к. входит в комплекс обязательных геофизич. работ, проводимых на всех скважинах, вводимых в строй. H. к. применяется также для поиска пропущенных нефтяных горизонтов в старых скважинах.

После облучения породы нейтронами в ней возникает радиоактивность, измерение к-рой даёт также информацию о составе породы (нейтронно-активационный каротаж). Основанные на этом методы H. к. применяются при поиске полезных ископаемых и в др. геологич исследованиях.

Лит.: Pontecorvo В., Neutron well logging new geological method based on nuclear physics, "Oil and Gas Journal", 1941/42, v. 40, № 18; Филиппов E. M., Прикладная ядерная геофизика, M-, 1973; Основы импульсного нейтрон-нейтронного каротажа, M., 1965; А р ц ы б а ш е в В. А., Ядерно-геофизическая разведка, M., 1972.

Б. Г. Ерозолимский.


НЕЙТРОНОГРАФИЯ (от нейтрон и ...графия), метод изучения строения молекул, кристаллов и жидкос