БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481тей с помощью рассеяния нейтронов. Сведения об атомной и магнитной структуре кристаллов получают из экспериментов по дифракции нейтронов (см. Дифракция частиц), о тепловых колебаниях атомов в молекулах и кристаллах - из экспериментов по рассеянию нейтронов, при к-ром нейтроны обмениваются энергией с изучаемым объектом (рассеяние в этом случае наз. неупругим). Первые работы в области H. принадлежат в основном Э. Ферми (1946-48); гл. принципы H. были впервые изложены в 1948 в обзоре амер. учёных Э. Уоллана и К. Шалла.

Нейтронография. эксперимент осуществляется на пучках нейтронов, выпускаемых из ядерных реакторов (предполагается использование для целей H. ускорителей электронов со спец. мишенями). На рис. 1, а приведена типичная установка для нейтронографич. исследований. Нейтронографич. аппаратура (дифрактометры, нейтронные спектрометры разных типов и т. д.) размещается в непосредственной близости от реактора на пути нейтронных пучков. Плотность потока нейтронов в пучках самых мощных реакторов на неск. порядков меньше плотности потока квантов рентгеновской трубки, поэтому нейтронографич. аппаратура, нейтронографич. эксперимент сложны; по этой же причине используемые в H. образцы существенно крупнее, чем в рентгенографии. Эксперименты могут проводиться в широком интервале темп-р (от 1 до 1500 К и выше), давлений, магнитных полей и др.

На рис. 1, б приведена нейтронограмма поликристаллич. образца BiFeO3 (зависимость интенсивности рассеяния 1 нейтронов от угла рассеяния в). Нейтронограмма представляет собой совокупность максимумов когерентного ядерного или магнитного рассеяния (см. ниже) на фоне диффузного рассеяния.

Успешное использование H. обусловлено удачным сочетанием свойств нейтрона как элементарной частицы. Совр. источники нейтронов - ядерные реакторы - дают тепловые нейтроны широкого диапазона энергий с максимумом в области 0,06 эв. Соответствующая этой энергии де-бройлевская длина волны нейтронов (~ 1 А) соизмерима с величиной межатомных расстояний в молекулах и кристаллах, что делает возможным осуществление дифракции нейтронов в кристаллах; на этом основан метод структурной нейтронографии.

Рис. 1. - схема нейтронографической установки для исследования поликристаллических образцов: 1 - система коллимации, формирующая нейтронный пучок; 2 - блок монохроматизации для выделения нейтронов с определённой фиксированной энергией (длиной волны) из сплошного спектра нейтронов ядерного реактора; 3 - нейтронный спектрометр с детектором нейтронов 4 для измерения интенсивности нейтронного излучения под различными углами рассеяния . Исследуемый образец помещается в центре спектрометра; 6 - нейтронограмма поликристаллического образца BiFeO3.

Соизмеримость энергии тепловых нейтронов с энергией тепловых колебаний атомов и молекулярных групп в кристаллах и жидкостях обеспечивает оптимальное использование неупругого рассеяния нейтронов в нейтронной спектроскопии. Наличие у нейтрона магнитного момента, к-рый может взаимодействовать с магнитными моментами атомов в кристаллах, позволяет осуществить магнитную дифракцию нейтронов на магнитоупорядоченных кристаллах, что является основой магнитной нейтронографии.

Структурная нейтронография - один из основных совр. методов структурного анализа кристаллов (вместе с рентгеновским структурным анализом и электронографией). Геометрич. теория дифракции всех трёх излучений - рентгеновских лучей, электронов, нейтронов - одинакова, но физич. природа взаимодействия их с веществом различна, что определяет специфк-ку и области применения каждого из методов. Рентгеновские лучи рассеиваются электронными оболочками атомов, нейтроны (через короткодействующие ядерные силы) - атомными ядрами, электроны - электрич. потенциалом атомов. Вследствие этого структурная H. имеет ряд особенностей. Рассеивающая способность атомов характеризуется атомной амплитудой рассеяния f. Особый характер взаимодействия нейтронов с ядрами приводит к тому, что атомная амплитуда рассеяния нейтронов fH (обычно её обозначают буквой b) для различных элементов (в отличие от f рентгеновских лучей) несистематическим образом зависит от порядкового номера Z элемента в периодич. системе. В частности, рассеивающие способности лёгких и тяжёлых элементов оказываются одного порядка. Поэтому изучение атомной структуры соединений лёгких элементов с тяжёлыми является специфич. областью структурной H. Прежде всего это относится к соединениям, содержащим легчайший элемент - водород. Рентгенографически и электронографически в нек-рых благоприятных случаях удаётся определить положение атомов водорода в кристаллах его соединений с др. лёгкими атомами (с Z <= 30). Нейтронографически определение положения атомов водорода не сложнее, чем большинства др. элементов, причём существ, методич. выгода достигается заменой в изучаемой молекуле атомов водорода на его изотоп - дейтерий. С помощью H. определена структура большого числа органич. соединений, гидридов и кристаллогидратов, уточнена структура различных модификаций льда, водородсодержащих сегнетоэлектриков и т. д., что дало ряд новых данных для развития кристаллохимии водорода.

Др. область оптимального использования H.- исследование соединений элементов с близкими Z (для рентгеновских лучей такие элементы практически неразличимы, т. к. их электронные оболочки содержат почти одинаковые числа электронов), напр, соединений типа шпинели MnFe2O4, сплавов Fe-Со-Ni и др. Предельный случай - исследование соединений разных изотопов данного элемента, к-рые рентгенографически абсолютно неразличимы, а для нейтронов различаются так же, как разные элементы.

В структурной H. из эксперимента находят интенсивности максимумов когерентного рассеяния I(hkl) (где h, k, l - кристаллографич. индексы Миллера), связанные со структурными амплитудами F (hkl) определёнными соотношениями (см. Рентгеновский структурный анализ). Далее с помощью рядов Фурье, коэфф. к-рых являются величины F (hkl), строится функция ядерной плотности (х, у, z). Суммирование рядов (как и большинство др. вычислений в структурном анализе) осуществляется на быстродействующих ЭВМ по спец. программам. Максимумы функции (x, у, z) соответствуют положениям ядер атомов.

Для примера на рис. 2, а приведена проекция ядерной плотности части элементарной ячейки кобальтпроизводного витамина B12; на этой проекции центр.

Рис. 1. а - ядерная плотность в элементарной ячейке кобальтпроизводного витамина B12 (полученная по методу синтеза Фурье). Центральный максимум, соответствующий атому Co в связи с его малой атомной амплитудой рассеяния выражен слабо. Это позволяет более точно определять положение в ячейке лёгких атомов - азота, кислорода и водорода; б - ядерная плотность в периферийной группе СНз. Ядерная плотность для атомов водорода приведена пунктиром в соответствии с отрицательной атомной амплитудой водорода.

атом ядра молекулы - атом кобальта - имеет минимальное значение b (является самым "лёгким") по сравнению с остальными атомами (азота, углерода, кислорода и даже водорода), вследствие чего оказывается возможной более точная локализация всех атомов. На рис. 2, б приведена ядерная плотность в концевой метильной группе CH3; атомы водорода чётко выявляются на рис. в виде минимумов, что связано с отрицат. значением b для протонов.

Имеются нек-рые различия в природе результатов, получаемых рентгенo- и нейтронографически: в первом случае экспериментально определяется положение центра тяжести электронного облака атома, во вгором - центра тяжести центроида тепловых колебаний ядра. В нек-рых прецизионных экспериментах это приводит к различию в межатомных расстояниях, полученных методами рентгенографии и H. С др. стороны, такое различие может быть использовано в исследовании распределения деталей электронной плотности в молекулах и кристаллах, ответственных за ковалентную химическую связь (рис. 3), неподелённую пару электронов и др.

Рис 3 Распределение части электронной плотности в молекуле циануровой кис лоты, построенное разностным методом по данным совместного рентгено и нейтровоструктурного анализов (разностный Фурье синтез). Максимумы, находящиеся в центре связей С - О, С - N и N-H, соответствуют электронной плотности, ответст венной за ковалентную связь (Приведена половина симметричной картины ).


Нейтронная спектроскопия. Близкие значения энергии тепловых нейтронов и энергии тепловых колебаний атомов в кристаллах позволяют измерять последнюю в экспериментах по неупругому рассеянию нейтронов с высокой точностью. В этом случае часть энергии нейтрона при взаимодействии передается молекуле или кристачлу, возбуждая колебания того или иного типа, возможен и обратный процесс передачи энергии от кристалла нейтрону. Различают неупругое когерентное и некогерентное рассеяния нейтронов .Когерентное неупругое рассеяние медленных нейтронов определяется динамикой всех частиц кристалла и может рассматриваться как столкновение нейтрона с коллективными тепловыми колебаниями решетки - фононами, при к-ром энергия и импульс (точнее, квази импульс) сталкивающихся частиц сохраняются. Эксперименты по неупругому ко герентному рассеянию нейтронов на монокристаллах исследуемого соединения дают поэтому полную информацию о фо-нонах в кристалле - фононные дисперсионные кривые, что недоступно др ме то дам исследований. На рис. 4 приведены дисперсионные кривые фононов (акусти ческие и оптические ветви, см .Колебания кристаллической решетки) в кристалле германия для двух кристаллографич направлений. Совпадение экспериментальных результатов с расчетами, сделанными на основе определенной теоре-тич модели, говорит о справедливости

Рис 4 Зависимость частоты = /2 фононных колебаний от волнового числа q (фононные дисперсионные кривые) для двух направлений - [111] (слева) и [100] (справа)- в кристалле германия .Приведены ветви продольных (L) и поперечных (T) оптических (О) и акустических (А) колебаний

модели, а также позволяет вычислить ряд параметров силового межатомного взаимодействия

При некогерентном неупругом рассеянии нейтроны рассеиваются отд ядрами кристалла, однако вследствие сильной связи ядер в решетке остальные ядра оказывают влияние на рассеяние медленных нейтронов, так что и в этом случае в рассеянии принимает участие весь коллектив частиц. Поэтому такое рассеяние можно также рассматривать как нейтронфононное столкновение, при к-ром, однако, сохраняется лишь энергия сталкивающихся частиц, а их импульс не сохраняется. Эксперименты по неупругому некогерентному рассеянию медленных нейтронов на моно- и поликристаллич образцах позволяют получить фононный спектр кристалла. По сравнению с др методами (в первую очередь оптическими) нейтронная спектроскопия дает возможность проводить исследования в широком диапазоне волновых векторов и спуститься до очень малых частот (~20 см-1), кроме того, рассеяние не ограничено в этом случае правилами отбора - в нейтронном эксперименте все колебания активны. Большое сечение некогерентного рассеяния нейтронов протонами делает и в этом случае водородсодержащие соединения хорошим объектом таких исследований. Нек-рые сведения могут быть получены и о динамике жидкостей и аморфных тел (времена релаксации, подвижность и др )


Магнитная нейтронография. Атомы нек рых элементов (переходных металлов, редкоземельных элементов и актинидов) обладают ненулевым спиновым и (или) орбитальным магнитным моментом. Ниже определенной критической темп-ры магнитные моменты этих атомов в чистых металлах или в соединениях устанавливаются упорядоченно - возникает упорядоченная атомная магнитная структура (рис. 5). Это существенным образом влияет на свойства магнетика Магнитная H - практически единств метод обнаружения и исследования магнитной структуры металлов. Наличие магнитного упорядочения обнаруживается обычно по появлению на нейтронограммах на фоне ядерного рассеяния дополнительных максимумов когерентного магнитного рассеяния, интенсивность к рых зависит от темп-ры. По положению этих максимумов и их интенсивности можно определить тип магнитной структуры кристалла и величину магнитного момента атомов. В экспериментах с монокристаллами можно, кроме того, установить абс направление магнитных мом