БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481в. или искусств, языка) (см. Знак, Семиотика).

Важнейшим видом знакового М. является математическое (логи-ко-математич.) М., осуществляемое средствами языка математики и логики (см. Математическая модель). Знаковые образования и их элементы всегда рассматриваются вместе с определ. преобразованиями, операциями над ними, которые выполняет человек или машина (преобразования математич., логич., химич. формул, преобразования состояний элементов цифровой машины, соответствующих знакам машинного языка, и др.). Совр. форма "материальной реализации" знакового (прежде всего, математического) М.- это М. на цифровых электронных вычислительных машинах, универсальных и специализированных. Такие машины - это своего рода "чистые бланки", на к-рых в принципе можно зафиксировать описание любого процесса (явления) в виде его программы, т. е. закодированной на машинном языке системы правил, следуя к-рым машина может "воспроизвести" ход моделируемого процесса.

Действия со знаками всегда в той или иной мере связаны с пониманием знаковых образований и их преобразований: формулы, матем. уравнения и т. п. выражения применяемого при построении модели науч. языка определ. образом интерпретируются (истолковываются) в понятиях той предметной области, к к-рой относится оригинал (см. Интерпретация). Поэтому реальное построение знаковых моделей или их фрагментов может заменяться мысленно-наглядным представлением знаков и (или) операций над ними. Эту разновидность знакового М. иногда наз. мысленным М. Впрочем, этот термин часто применяют для обозначения "интуитивного" М., не использующего никаких чётко фиксированных знаковых систем, а протекающего на уровне "модельных представлений". Такое М. есть непременное условие любого познавательного процесса на его начальной стадии.

По характеру той стороны объекта, к-рая подвергается М., уместно различать М. структуры объекта и М. его поведения (функционирования протекающих в нем процессов и т. п.). Это различение сугубо относительно для химии или физики, но оно приобретает чёткий смысл в науках о жизни, где различение структуры и функции систем живого принадлежит к числу фундаментальных методологич. принципов исследования, и в кибернетике, делающей акцент на М. функционирования изучаемых систем. При "кибернетическом" М. обычно абстрагируются от структуры системы, рассматривая её как "чёрный ящик", описание (модель) к-рого строится в терминах соотношения между состояниями его "входов" и "выходов" ("входы" соответствуют внешним воздействиям на изучаемую систему, "выходы" - её реакциям на них, т. е. поведению).

Для ряда сложных явлений (напр., турбулентности, пульсаций в областях отрыва потока и т. п.) пользуются стохастическим М., основанным на установлении вероятностей тех или иных событий. Такие модели не отражают весь ход отдельных процессов в данном явлении, носящих случайный характер, а определяют нек-рый средний, суммарный результат.

Понятие М. является гносеологич. категорией, характеризующей один из важных путей познания. Возможность М., т. е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определённом смысле отображает (воспроизводит, моделирует) к.-л. его черты; при этом такое отображение (и связанная с ним идея подобия) основано, явно или неявно, на точных понятиях изоморфизма или гомоморфизма (или их обобщениях) между изучаемым объектом и нек-рым другим объектом "оригиналом" и часто осуществляется путём предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного М. полезно наличие уже сложившихся теорий исследуемых явлений, или хотя бы удовлетворительно обоснованных теорий и гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность М. значительно возрастает, если при построении модели и переносе результатов с модели на оригинал можно воспользоваться нек-рой теорией, уточняющей связанную с используемой процедурой М. идею подобия. Для явлений одной и той же физич. природы такая теория, основанная на использовании понятия размерности физич. величин, хорошо разработана (см. Моделирование физическое. Подобия теория). Но для М. сложных систем и процессов, изучаемых, напр., в кибернетике, аналогичная теория ещё не разработана, чем и обусловлено интенсивное развитие теории больших систем - общей теории построения моделей сложных динамич. систем живой природы, техники и социально-экономич. сферы.

М. всегда используется вместе с др. общенауч. и спец. методами. Прежде всего М. тесно связано с экспериментом. Изучение к.-л. явления на его модели (при предметном, знаковом М., М. на ЭВМ) можно рассматривать как особый вид эксперимента: "модельный эксперимент", отличающийся от обычного ("прямого") эксперимента тем, что в процесс познания включается "промежуточное звено" - модель, являющаяся одновременно и средством, и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над к-рыми затруднён, экономически невыгоден, либо вообще невозможен в силу тех или иных причин [М. уникальных (напр., гидро-технич.) сооружений, сложных пром. комплексов, экономич. систем, социальных явлений, процессов, происходящих в космосе, конфликтов и боевых действий и др.].

Исследование знаковых (в частности, матем.) моделей также можно рассматривать как нек-рые эксперименты ("эксперименты на бумаге", умственные эксперименты). Это становится особенно очевидным в свете возможности их реализации средствами электронной вычислит, техники. Один из видов модельного эксперимента - модельно-кибернетич. эксперимент, в ходе к-рого вместо " реального" экспериментального оперирования с изучаемым объектом находят алгоритм (программу) его функционирования, который и оказывается своеобразной моделью поведения объекта. Вводя этот алгоритм в цифровую ЭВМ и, как говорят, "проигрывая" его, получают информацию о поведении оригинала в определ. среде, о его функциональных связях с меняющейся "средой обитания".

Т. о., можно прежде всего различать "материальное" (предметное) и "идеальное" М.; первое можно трактовать как "экспериментальное", второе - как "теоретическое" М., хотя такое противопоставление, конечно, весьма условно не только в силу взаимосвязи и обоюдного влияния этих видов М., но и наличия таких "гибридных" форм, как "мысленный эксперимент". "Материальное" М. подразделяется, как было сказано выше, на физич. и предметно-математич. М., а частным случаем последнего является аналоговое М. Далее, "идеальное" М. может происходить как на уровне самых общих, быть может даже не до конца осознанных и фиксированных, "модельных представлений", так и на уровне достаточно детализированных знаковых систем; в первом случае говорят о мысленном (интуитивном) М., во втором - о знаковом М. (важнейший и наиболее распространённый вид его -логико-матем. М.). Наконец, М. на ЭВМ (часто именуемое "кибернетическим") является "предметно-математич. по форме, знаковым по содержанию".

М. необходимо предполагает использование абстрагирования и идеализации. Отображая существ, (с точки зрения цели исследования) свойства оригинала и отвлекаясь от несущественного, модель выступает как специфич. форма реализации абстракции, т. е. как нек-рый абстрактный идеализированный объект. При этом от характера и уровней лежащих в основе М. абстракций и идеализации в большой степени зависит весь процесс переноса знаний с модели на оригинал; в частности, существ, значение имеет выделение трёх уровней абстракции, на к-рых может осуществляться М.: уровня потенциальной осуществимости (когда упомянутый перенос предполагает отвлечение от ограниченности познавательно-практической деятельности человека в пространстве и времени, см. Абстракции принцип), уровня "реальной" осуществимости (когда этот перенос рассматривается как реально осуществимый процесс, хотя, быть может, лишь в некоторый будущий период человеч. практики) и уровня практич. целесообразности (когда этот перенос не только осуществим, но и желателен для достижения нек-рых конкретных познавательных или практич. задач).

На всех этих уровнях, однако, приходится считаться с тем, что М. данного оригинала может ни на каком своём этапе не дать полного знания о нём. Эта черта М. особенно существенна в том случае, когда предметом М. являются сложные системы, поведение к-рых зависит от значит, числа взаимосвязанных факторов различной природы. В ходе познания такие системы отображаются в различных моделях, более или менее оправданных; при этом одни из моделей могут быть родственными друг другу, другие же могут оказаться глубоко различными. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки точно определяемых критериев сравнения. Если такие критерии основываются на экспериментальных данных, то возникает дополнительная трудность, связанная с тем, что хорошее совпадение заключений, к-рые следуют из модели, с данными наблюдения и эксперимента ещё не служит однозначным подтверждением верности модели, т. к. возможно построение др. моделей данного явления, к-рые также будут подтверждаться эмпирич. фактами. Отсюда - естественность ситуации, когда создаются взаимодополняющие или даже противоречащие друг другу модели явления; противоречия могут "сниматься" в ходе развития науки (и затем появляться при М. на более глубоком уровне). Напр., на определ. этапе развития теоретич. физики при М. физич. процессов на "классическом" уровне использовались модели, подразумевающие несовместимость корпускулярных и волновых представлений; эта "несовместимость" была "снята" созданием квантовой механики, в основе к-рой лежит тезис о корпускулярно-волновом дуализме, заложенном в самой природе материи.

Другим примером такого рода моделей может служить М. различных форм деятельности мозга. Создаваемые модели интеллекта и психич. функций - напр., в виде эвристических программ для ЭВМ - показывают, что М. мышления как информационного процесса возможно в различных аспектах (дедуктивном - формально-логическом, см. Дедукция; индуктивном - см. Индукция; нейтрол отческом, эвристическом - см. Эвристика), для "согласования" к-рых необходимы дальнейшие логич., психоло-гич., физиологич. эволюционно-генетич. и модельно-кибернетич. исследования.

М. глубоко проникает в теоретич. мышление. Более того, развитие любой науки в целом можно трактовать - в весьма общем, но вполне разумном смысле,-как "теоретическое М.". Важная позна-ват. функция М. состоит в том, чтобы служить импульсом, источником новых теорий. Нередко бывает так, что теория первоначально возникает в виде модели, дающей приближённое, упрощённое объяснение явления, и выступает как первичная рабочая гипотеза, к-рая может перерасти в "предтеорию" - предшественницу развитой теории. При этом в процессе М. возникают новые идеи и формы эксперимента, происходит открытие ранее неизвестных фактов. Такое "переплетение" теоретич. и экспериментального М. особенно характерно для развития физич. теорий (напр., молекуляр-но-кинетич. или теории ядерных сил).

М.- не только одно из средств отображения явлений и процессов реального мира, но и - несмотря на описанную выше его относительность - объективный практич. критерий проверки истинности наших знаний, осуществляемой непосредственно или с помощью установления их отношения к другой теории, выступающей в качестве модели, адекватность к-рой считается практически обоснованной. Применяясь в органич. единстве с др. методами познания, М. выступает как процесс углубления позна ния, его движения от относительно бедных информацией моделей к моделям более содержательным, полнее раскрывающим сущность исследуемых явлений действительности.

При М. более или менее сложных систем обычно применяют различные виды М. Примеры см. ниже в разделах о М. энергосистем и М. химич. реактивов.

Лит.: Гутенмахер Л. И., Электрические модели, М.- Л., 1949; К и р п и-ч е в М. В., Теория подобия, М., 1953; Ляпунов А. А., О некоторых общих вопросах кибернетики, в кн.: Проблемы кибернетики, в. 1, М., 1958; Вальт Л. О., Познавательное значение модельных представлений в физике, Тарту, 1963