БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

°C и выше). При T=< 1000 oС методы П. играют в целом второстепенную роль, но при Т > 1000 °С они становятся главными, а при Т > 3000 °С - практически единственными методами измерения Т. Методами П. в пром. и лабораторных условиях определяют темп-ру в печах и др. нагреват. установках, темп-ру расплавленных металлов и изделий из них (проката и т. п.), темп-ру пламён, нагретых газов, плазмы. Методы П. не требуют контакта датчика измерит. прибора с телом, темп-pa к-рого измеряется, и поэтому могут применяться для измерения очень высоких темп-р. Осн. условие применимости методов П.- излучение тела должно быть чисто тепловым, т. е. оно должно подчиняться Кирхгофа закону излучения. Твёрдые тела и жидкости при высоких темп-pax обычно удовлетворяют этому требованию, в случае же газов и плазмы необходима спец. проверка для каждого нового объекта или новых физ. условий. Так, излучение однородного слоя плазмы подчиняется закону Кирхгофа, если распределения молекул, атомов, ионов и электронов плазмы по скоростям соответствуют Максвелла распределению, заселённости возбуждённых уровней энергии соответствуют закону Больцмана (см. Болъцмана статистика), а диссоциация и ионизация определяются действующих масс законом, причём во все эти соотношения входит одно и то же значение Т. Такое состояние плазмы наз. термически равновесным. Интенсивность излучения однородной равновесной плазмы и в линейчатом, и в сплошном спектрах однозначно определяется её химич. составом, давлением, атомными константами и равновесной темп-рой. Если плазма неоднородна, то даже при повсеместном выполнении условий термич. равновесия её излучение не подчиняется закону Кирхгофа. В этом случае методы П. применимы лишь к источникам света, обладающим осевой симметрией.

Измерения наиболее просты для твёрдых тел и жидкостей, спектр излучения к-рых чисто сплошной. В этом случае измерения темп-ры осуществляют пирометрами, действие к-рых осн. на законах излучения абсолютно чёрного тела. Обычно поверхности исследуемого тела придают форму полости, чтобы коэфф. поглощения был близок к единице (оптич. свойства такого тела близки к свойствам абсолютно чёрного тела).

Наиболее универсальны методы П., основанные на измерении интенсивностей спектральных линий. Они обеспечивают макс. точность, если известны абс. вероятность соответствующего перехода и концентрация атомов данного сорта. Если же концентрация атомов не известна с достаточной точностью, применяют метод относит. интенсивностей, в к-ром темп-ру вычисляют по отношению интенсивностей двух (или нескольких) спектральных линий. Варианты этих методов разработаны для измерения темп-ры как оптически тонких слоев плазмы, так и оптически толстых.

В др. группе методов П. темп-pa определяется по форме или ширине спектральных линий, к-рые зависят от темп-ры либо непосредственно благодаря Доплера эффекту, либо косвенно - благодаря Штарка эффекту и зависимости плотности плазмы от темп-ры. В нек-рых методах темп-pa определяется по абс. или относит. интенсивности сплошного спектра ("континуума"). Особое значение имеют методы определения темп-ры по спектру рассеянного плазмой излучения лазера, позволяющие исследовать неоднородную плазму. К недостаткам методов П. следует отнести трудоёмкость измерений, сложность интерпретации результатов, невысокую точность (напр., погрешности измерений темп-ры плазмы в лучших случаях оказываются не ниже 3-10%).

Применение методов П. для исследования неравновесной плазмы даёт ценную информацию о её состоянии, хотя понятие темп-ры в этом случае неприменимо.

Лит.: Оптическая пирометрия плазмы. Сб. статей, [пер. с англ.], под ред. n. n. Соболева, М., 1960; Грим Г., Спектроскопия плазмы, пер. с англ., М., 1969; Методы исследования плазмы (Спектроскопия, лазеры, зонды), пер. с англ., под ред. С. Ю. Лукьянова, М., 1971. В. Н. Колесников.

ПИРОМЕТРЫ (от греч. рyr - огонь и ...метр), приборы для измерения темп-ры непрозрачных тел по их излучению в оптич. диапазоне спектра. Тело, темп-ру к-рого определяют при помощи П., должно находиться в тепловом равновесии и обладать коэфф. поглощения, близким к единице (см. Пирометрия). Распространены яркостные, цветовые и радиационные П. Осн. типом является яркостный П., обеспечивающий наибольшую точность измерений темп-ры в диапазоне 103 - 104 К.

В простейшем визуальном яркостном П. с исчезающей нитью (рис. 1) объектив фокусирует изображение исследуемого тела на плоскость, в к-рой расположена нить (ленточка) эталонной лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектральную область около длины волны Лэ = 0,65 мкм, нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются выравнивания яркостей нити и тела (нить в этот момент становится неразличимой).

Рис. 1. Принципиальная схема визуального яркостного пирометра с исчезающей нитью: 1 - источник излучения; 2 - оптическая система (телескоп пирометра); 3 - эталонная лампа накаливания; 4 - фильтр с узкой полосой пропускания; 5 - объектив; 6 - реостат, которым регулируют ток накала; 7 - измерительный прибор (миллиамперметр).

Шкала прибора, регистрирующего ток накала, прокалибрована обычно в оС или К, и в момент выравнивания яркостей прибор показывает т. н. яркостную температуру (Тb) тела. Истинная темп-pa тела Т определяется на основе законов теплового излучения Кирхгофа и Планка по формуле:

T = ТbС2/(С2 + ЛэТblnaЛ, т), (1)

где С2 = 0,014388 м . К, aЛ, т - коэфф. поглощения тела, Лэ - эффективная длина волны П.

Точность результата в первую очередь зависит от строгости выполнения условий пирометрич. измерений (aЛ, т ~ 1 и др.). В связи с этим наблюдаемой поверхности придают форму полости. Осн. инструм. погрешность обусловлена нестабильностью температурной лампы. Заметную погрешность могут вносить также индивидуальные особенности глаза наблюдателя. Уфотоэлектрических П. (рис. 2) этот вид погрешности отсутствует. Погрешность образцовых лабораторных фотоэлектрич. П. не превышает сотых долей градуса при Т = 1000 °С. Пром. серийные фотоэлектрич. П. обладают на порядок большей погрешностью, визуальные - ещё на порядок большей. Образцовые яркостные П. приняты в качестве основных интерполяционных приборов, определяющих Международную практическую температурную шкалу (МПТШ-68) при темп-pax выше точки затвердевания золота (1064,43 oС).

Для измерения темп-ры тел, у к-рых a ~ const в оптическом диапазоне спектра, применяют цветовые П. Этими П. определяют отношение яркостей обычно в синей и красной областях спектра b1(Л1,T)/b2(Л2,T) (напр., для длин волн Л1 = 0,48 мкм и Л2= 0,60 мкм). Шкала прибора прокалибрована в oС и показывает цветовую температуру Tc. Истинная темп-pa Т тела определяется по формуле

[1941-12.jpg]



Рис. 2. Оптическая система автоматического фотоэлектрического пирометра: 1 - источник излучения; 2 - линзы оптической системы; 3 - модулятор, попеременно пропускающий излучение источника и эталонной лампы 4 к фотоэлементу 7; 5 - фильтр с узкой частотной полосой пропускания; 6 - вогнутая линза. Фотоэлемент поочерёдно освещается то источником, то лампой. При неравенстве создаваемых ими освещённостей в цепи фотоэлемента возникает переменная составляющая фототока, амплитуда которой пропорциональна разности освещённостей. При измерениях ток накала лампы регулируют так, чтобы переменная составляющая фототока стала равна нулю.

Цветовые П. менее точны, менее чувствительны и более сложны, чем яркостные; применяются в том же диапазоне темп-р. Наиболее чувствительны (но и наименее точны) радиац. П., или П. суммарного излучения, регистрирующие полное излучение тела. Действие их основано на Стефана - Болъцмана законе излучения и Кирхгофа законе излучения. Объектив радиац. П. фокусирует наблюдаемое излучение на приёмник (обычно термостолбик или болометр), сигнал к-рого регистрируется прибором, прокалиброванным по излучению абсолютно чёрного тела и показывающим радиационную температуру Тr. Истинная темп-pa тела определяется по формуле
[1941-13.jpg]

где aт - полный коэфф. поглощения тела. Радиац. П. можно измерять темп-ру, начиная с 200 oС. В пром-сти П. широко применяют в системах контроля и управления температурными режимами разнообразных технологич. процессов.

Лит.: pибо Г., Оптическая пирометрия пер. с франц., М.- Л., 1934; Гордов А. Н., Основы пирометрии, 2 изд., М., 1971. В. Н. Колесников.

ПИРОМОРФИТ (от греч. руг - огонь и morphe-форма), минерал хим. состава Рb5[РО4]3Сl; содержит 82,0% РbО; 15,4% Р2O5; 2,6% С1. В виде примеси иногда присутствует As, изоморфно замещающий фосфор. П. кристаллизуется в гексагональной системе, образуя призматич. или бочонкообразные кристаллы, реже зернистые, волокнистые и натёчные агрегаты. Тв. по минералогич. шкале 3,5-4; плотность 6700-7100 кг/м3; хрупок; цвет зелёный с различными оттенками, реже жёлтый, оранжевый и др. П. распространён в зонах окисления месторождений свинцовых и свинцово-цинковых руд. Вместе с П. встречаются др. минералы РЬ: церуссит, англезит, миметезит, ванадинит, вульфенит и др. Крупных скоплений не образует. Совместно с др. минералами свинцовых руд служит для извлечения металлич. свинца (см. Полиметаллические руды).

ПИРОНЫ, кетопираны, гетероциклические соединения, оксопроизводные пиранов. Простейшие П. - a-П. (кумалин, бесцветная жидкость с запахом свежего сена, tкип 206-209 °С) и y- Пи . (бесцветные кристаллы, tпл 31-32 °С).
[1941-14.jpg]

П.- весьма реакционноспособные соединения; напр., они взаимодействуют с аммиаком и первичными аминами, легко восстанавливаются; а-П. вступает в реакцию Дильса-Альдера (см. Диеновый синтез). П. можно получить декарбоксилированием их производных - пиронкарбоновых к-т (соответственно кумалиновой и хелидоновой). Производные П. широко распространены в природе: в бобах тонка содержится бензо-a-пирон (кумарин), в опии - меконовая к-та, в соке чистотела - хелидоновая к-та; нек-рые пигменты растений являются производными у- П.

ПИРОП (от греч. pyropos - подобный огню), минерал из группы гранатов, представляющий собой в чистом виде магнезиальный алюмогранат Mg3Al2 [SiО4)3 с содержанием MgO 20,45%. Обычны примеси Fe, Mn и др. П. отличается красивым густым тёмно-красным цветом. Характерен для некоторых перидотитов, кимберлитов, а также серпентинитов. Прозрачные кроваво-красные разновидности П. являются драгоценными камнями. Наиболее известны П. из месторождений ЧССР, где они присутствуют в обломках базальтовой брекчии, включённой в перидотиты, и добываются из россыпей. В СССР известен в кимберлитах (где П. является спутником алмаза) и эклогитах Якутии.

ПИРОПЛАЗМИДОЗЫ, группа широко распространённых кровепаразитарных болезней домашних и диких млекопитающих, птиц, рыб и земноводных (известны случаи заражения и человека); вызываются одноклеточными организмами пироплазмидами. Экономич. ущерб складывается из гибели животных (смертельность 30-60% ), снижения продуктивности, значит. затрат на проведение профилактич. и леч. мероприятий. Возбудители П. паразитируют внутри эритроцитов животных; в окрашенных препаратах имеют округлую, грушевидную, парногрушевидную, амёбовидную и др. формы.

П.- сезонные болезни, регистрируются преим. в весенне-летний период, что связано с передачей возбудителей членистоногими переносчиками - иксодовыми клещами. П. характеризуются лихорадкой, анемией, желтушностью слизистых оболочек, гемоглобинурией. Животные угнетены, аппетит понижен или отсутствует, нарушается деятельность сердечнососудистой и пищеварит. систем. Переболевшие П. животные приобретают иммунитет в пределах срока паразитоноси-тельства (от 4 мес. до 2-3 лет). Профилактика - предохранение животных от нападения заражённых клещей, а также обработка животных спец. препаратами (химиопрофилактика). См. также бабезиозы, нутталлиоз, пироплазмоз, тейлериоз.

Лит.: Абрамов И. В., Особенности пироплазмоза и нутталиоза лошадей различных зон СССР, М., 1962 (Автореферат дисс.); Догель В. А., Полянский Ю. И., Хейсин Е., Общая протозоология, М.- Л., 1962; Марков А. А., Кровопаразитарные заболевания сельскохозяйственных животных (пироплазмозы, бабезиеллозы, нуттали