БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481ягой 2 - 450 мн, работающий на метане и кислороде; предназначен для системы ориентации космических летательных аппаратов (США).

МИКРОРЕЛЬЕФ, формы рельефа, Я1 ляющиеся как бы деталями более круп ных форм поверхности того или иног участка Земли (напр., бугры, прируслс вые валы и косы, небольшие воронки, пс лигональные грунты, песчаная рябь степные блюдца и др.). М. обязан свои! происхождением прежде всего экзогенньп рельефообразующим факторам. См. так же Рельеф.

МИКРОСВАРКА, сварка деталей и цветных и чёрных металлов малой тол щины (менее 0,5мм) и сечений (до 10мм2] а также деталей из металлов с полупрс водниковыми кристаллами. При М. при меняют оптич. приборы (лупу или ми кроскоп), к-рые крепятся на сварочно! машине. В зависимости от особенносте! свариваемых изделий, технологич. и др требований выполняют контактную, элек трическую или конденсаторную М., хо лодную, ультразвуковую, термокомпрес сионную, электроннолучевую, лазернук и др., а также комбинированную М. При меняют в электронной, радиотехнич пром-сти, приборостроении и др. отрас лях (см. Сварка).

МИКРОСКОП (от микро... и греч skopeo - смотрю), оптический прибо] для получения сильно увеличенных изо бражений объектов (или деталей и: структуры), невидимых невооружённыр глазом. Человеческий глаз представляв собой естеств. оптич. систему, характе ризующуюся определённым р а з р е ш е н и е м, т. е. наименьшим расстоя нием между элементами наблюдаемой объекта (воспринимаемыми как точки илз линии), при к-ром они ещё могут быт: отличены один от другого. Для нормаль кого глаза при удалении от объекта н; т. н. расстояние наилучше го видения (D = 250 мм) мини мальное разрешение составляет пример но 0,08 мм (а у мн. людей - ок. 0,20 мм). Размеры микроорганизмов, большинства растит, и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены М. различных типов. С помощью М. определяют форму, размеры, строение и мн. др. характеристики микрообъектов. М. даёт возможность различать структуры с расстоянием между элементами до 0,20 мкм.

Историческая справка. Свойство системы из двух линз давать увеличенные изображения предметов было известно уже в 16 в. в Нидерландах и Сев. Италии мастерам, изготовлявшим очковые стёкла. Имеются сведения, что ок. 1590 прибор типа М. был построен 3. Янсеном (Нидерланды). Быстрое распространение М. и их совершенствование, гл. обр. ремесленниками-оптиками, начинается с 1609-10, когда Г. Галилей, изучая сконструированную им зрительную трубу, использовал её и в качестве М., изменяя расстояние между объективом и окуляром. Первые блестящие успехи применения М. в науч. исследованиях связаны с именами Р. Гука (ок. 1665; в частности, он установил, что животные и растит, ткани имеют клеточное строение) и особенно А. Левенгука, открывшего с помощью М. микроорганизмы (1673-77). В нач. 18 в. М. появились в России; здесь Л. Эйлер (1762; "Диоптрика", 1770-71) разработал методы расчёта оптич. узлов М. В 1827 Дж. Б. Амичи впервые применил в М. иммерсионный объектив. В 1850 англ, оптик Г. Сорби создал первый М. для наблюдения объектов в поляризованном свете. Широкому развитию методов микро-скопич. исследований и совершенствованию различных типов М. во 2-й пол. 19 и в 20 вв. в значит.степени способствовала науч. деятельность Э. Аббе, к-рый разработал (1872-73) ставшую классической теорию образования изображений несамосветящихся объектов в М. Англ, учёный Дж. Сиркс в 1893 положил начало интерференционной микроскопии. В 1903 австр. исследователи Р. Зшмонди и Г. Зидентопф создали т. н. ультрамикроскоп. В 1935 Ф. Цернике предложил метод фазового контраста для наблюдения в М. прозрачных слабо рассеивающих свет объектов. Большой вклад в теорию и практику микроскопии внесли сов. учёные - Л. И. Мандельштам, Д. С. Рождественский, А. А. Лебедев, В. П. Линник.

Оптическая схема, принцип действия, увеличение и разрешающая способность микроскопа. Одна из типичных схем М. приведена на рис. 1. Рассматриваемый объект (препарат) 7 располагают на предметном стекле 10. Конденсор 6 концентрирует на объекте пучок света, отражающегося от зеркала 4. Источником света в М. чаще всего служит спец. осветитель, состоящий из лампы и линзы-коллектора (соответственно / и 2 на рис.); иногда зеркало направляет на объект обычный дневной свет. Диафрагмы - полевая 3 и апертурная 5 ограничивают световой пучок и уменьшают в нём долю рассеянного света, попадающего па препарат "со стороны" и не участвующего в формировании изображения.

Возникновение изображения препарата в М. в основных (хотя и наиболее простых) чертах можно описать в рамках геометрической оптики. Лучи света, исходящие от объекта 7, преломляясь в объективе 8, создают перевёрнутое и увеличенное действительное изображение оптическое Т объекта. Это изображение рассматривают через окуляр 9. При визуальном наблюдении М. фокусируют так, чтобы 7' находилось непосредственно за передним фокусом окуляра Fок. В этих условиях окуляр работает как лупа: давая дополнит, увеличение, он образует мнимое изображение 7" (по-прежнему перевёрнутое); проходя через оптич. среды глаза наблюдателя, лучи от 7" создают на сетчатке глаза действит. изображение объекта. Обычно 7" располагается на расстоянии наилучшего видения D от глаза. Если сдвинуть окуляр так, чтобы Т оказалось перед FOK, то изображение, даваемое окуляром, становится действительным и его можно получить на экране или фотоплёнке; по такой схеме производят, в частности, фото- и киносъёмку микроскопич. объектов (см. Микропроекция).

Общее увеличение М. равно произведению линейного увеличения объектива
[1617-4.jpg]

берется в мм). Обычно объективы М. имеют увеличения от 6,3 до 100, а окуляры - от 7 до 15 (их значения гравируются на оправах). Поэтому общее увеличение М. лежит в пределах от 44 до 1500.

Разумеется, технически возможно применить в М. объективы и окуляры, к-рые дадут общее увеличение, значительно превышающее 1500. Однако обычно это нецелесообразно. Большие увеличения не являются самоцелью - назначение М. состоит в том, чтобы обеспечить различение как можно более мелких элементов структуры препарата, т. е. в максимальном использовании разрешающей способности М. А она имеет предел, обусловленный волновыми свойствами света. (В геометрич. оптике, в рамках к-рой выше было рассмотрено образование изображения в М., отвлекаются от этих свойств света, но предел возможностей М. определяют именно они.) Согласно общей закономерности, наблюдая объект в к.-л. излучении с длиной волны X, невозможно различить элементы объекта, разделённые расстояниями, намного меньшими, чем X. Эта закономерность проявляется и в М., причём количеств, её выражение несколько различно для самосветящихся и несамосветящихся объектов. Изображение испускающей монохроматический свет точки, даваемое даже идеальным (не вносящим никаких искажений) объективом, не воспринимается глазом как точка, так как вследствие дифракции света фактически является круглым светлым пятнышком конечного диаметра d, окружённым неск. попеременно тёмными и светлыми кольцами (т. н. дифракционное пятно,
[1617-5.jpg]

ния среды, разделяющей светящуюся точку и объектив, ит - половина угла раствора светового пучка, исходящего из точки и попадающего в объектив). Если две светящиеся точки расположены близко друг от друга, их дифракционные картины накладываются одна на другую, давая в плоскости изображения сложное распределение освещённости (рис. 2). Наименьшая относит, разница освещённостей, к-рая может быть замечена глазом, равна 4%. Этому соответствует наименьшее расстояние

Рис. 2. Распределение освещённостей в изображении двух близких "точек" в предельном случае их визуального разрешения.
[1617-6.jpg]

апертуры ооъектива и конденсора м. (значения апертур гравируются на оправах).

Изображение любого объекта состоит из совокупности изображений отд. элементов его структуры. Мельчайшие из них воспринимаются как точки, и к ним полностью применимы ограничения, следующие из дифракции света в М.- при расстояниях между ними, меньших предельного разрешения М., они сливаются и не могут наблюдаться раздельно. Существенно повысить разрешающую способность М. можно, только увеличивая Л. В свою очередь, увеличить А можно лишь за счёт повышения показателя преломления и среды между объектом и объективом (т. к. sin ит =5 1). Это и осуществлено в иммерсионных системах, числовые апертуры к-рых достигают величины А = 1,3 (у обычных "сухих" объективов макс. А " 0,9).

Существование предела разрешающей способности влияет на выбор увеличений, получаемых с помощью М. Увеличения от 500 А до 1000 А наз. полезными, т. к. при них глаз наблюдателя различает все элементы структуры объекта, разрешаемые М. При этом исчерпываются возможности М. по разрешающей способности. При увеличениях св. 1000 А не выявляются никакие новые подробности структуры препарата; всё же иногда такие увеличения используют - в микрофотографии, при проектировании изображений на экран и в нек-рых др. случаях. Существенно более высокими, чем у М., разрешающей способностью и, следовательно, полезным увеличением обладает электронный микроскоп.
1616.htm
МИГРАЦИИ НАСЕЛЕНИЯ, перемещения населения, связанные с переменой места жительства. М. н. являются одной из важнейших проблем народонаселения и рассматриваются не только как простое механич. передвижение людей, а как сложный обществ, процесс, затрагивающий многие стороны социально-экономич. жизни. М. н. сыграли выдающуюся роль в истории человечества, с ними связаны процессы заселения, хозяйств, освоения земли, развития производительных сил, образования и смешения рас, языков и народов. (О первоначальном заселении Земли и расселении человека см. Земля, раздел Человек и Земля.) М. н. имеют разнообразные аспекты; их характер и структуру, последствия, к-рые они вызывают, исследуют ряд наук -демография, экономика, география, социология, статистика, этнография и др. Прикладное значение имеют исследования М. н. для целей общеэкономич. и регионального планирования, использования трудовых ресурсов.

Различают М.н. внешние (межконтинентальные и межгосударственные) и внутренние (внутригосударственные): межрайонные и переселения населения из сел. местности в города (см. Урбанизация). М. н. могут быть постоянными (перемещение на постоянное или длительное местожительство, см. Иммиграция населения, Эмиграция населения) и временными, сезонными (переезд на относительно короткий срок). Статистика ООН признаёт мигрантами лиц, проживающих на новом месте более 6 мес. Иногда к М. н. относят туризм, курортные поездки, паломничество и др., что, однако, неправильно, ибо здесь нет смены места жительства. Также нельзя относить к М. н. так наз. маятниковую миграцию - дальние каждодневные поездки на работу.

С каждой обществ, формацией связаны специфич. формы и причины М. н., объёмы и направления миграционных потоков. К самым ранним М. н. относятся продолжавшиеся тысячелетиями стихийные расселения древних племён по всему земному шару, носившие мирный характер освоения новых территорий. Позднее, в эпоху распада первобытнообщинного строя, с развитием произ-ва и ростом населения, массовые передвижения его происходили в результате столкновения племён; всё это сопровождалось образованием и разрушением раннеклассовых государств, формированием новых народов. В конце антич. времени и в начале средневековья в итоге Великого переселения народов произошло смешение различных племен, оказавшее решающее влияние на формирование совр. этнич. состава европ. населения. В период феодализма массовые М. н. были связаны с бегством крестьян от крепостнич. гнёта на свободные земли, а также с принудительным переселением крепостных на захваченные феодалами земли.

Внешние (крупные межконтинентальные) М. н. последовали после Великих географических открытий. В эпоху первонач. накопления капитала эти М. н. были связаны с колонизацией открытых и захваченных европейцами земель в Америке, Азии и Африке, истреблением и вытеснением коренного населения в глубь страны. В 16-18 вв. значит, часть Америки была заселена свободными переселе