БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481зже, когда были указаны её интерпретации и тем полностью решён вопрос о её реальном смысле, логич. непротиворечивости.

Интерпретации (модели) геометрии Лобачевского. Л. г. изучает свойства "плоскости Лобачевского"(в планиметрии) и "пространства Лобачевского" (в стереометрии). Плоскость Лобачевского - это плоскость (множество точек), в к-рой определены прямые линии, а также движения фигур (вместе с тем - расстоя-' ния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, к-рая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Л. г. состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в к-рых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Л. г. (об интерпретации вообще см. Геометрия, раздел Истолкования геометрии). Итал. математик Э. Бельтрами в 1868 заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример к-рых представляет псевдосфера (рис. 2). Если точкам и прямым на конечном куске плоскости Лобачевского сопоставлять точки и кратчайшие линии (геодезические) на псевдосфере и движению в плоскости Лобачевского сопоставлять перемещение фигуры по псевдосфере с изгибанием, т. е. деформацией, сохраняющей длины, то всякой теореме Л. г. будет отвечать факт, имеющий место на псевдосфере. Т. о., Л. г. получает простой реальный смысл. При этом длины, углы, площади понимаются в смысле естеств. измерения их на псевдосфере. Однако здесь даётся интерпретация только геометрии на куске плоскости Лобачевского, а не на всей плоскости и тем более не в пространстве (в 1901 Д. Гильберт доказал даже, что вообще в евклидовом пространстве не может существовать регулярной поверхности, геометрия на к-рой совпадает с геометрией всей плоскости Лобачевского).

В 1871 Ф. Клейн указал ту модель как всей плоскости, так и пространства Лобачевского, к-рая была описана выше и в к-рой плоскостью служит внутренность круга, а пространством - внутренность шара. Между прочим, в этой модели расстояние между точками А и угол - ещё сложнее.

Позже А. Пуанкаре в связи с задачами теории функций комплексного переменного дал др. модель. За плоскость Лобачевского принимается внутренность круга (рис. 3), прямыми считаются дуги окружностей, перпендикулярных окружности данного круга, и его | диаметры, движениями -преобразования, получаемые комбинациями инверсий относительно окружностей, дуги к-рых служат прямыми. Модель Пуанкаре замечательна тем, что в ней углы изображаются обычными углами. Исходя из таких соображений, можно строить модель Л. г. в пространстве.

Коротко модели Клейна и Пуанкаре можно определить так. В обоих случаях плоскостью Лобачевского может служить внутренность круга (пространством - внутренность шара), и Л. г. есть учение о тех свойствах фигур внутри круга (шара), к-рые в случае модели Клейна не изменяются при проективных, а в случае модели Пуанкаре - при конформных преобразованиях круга (шара) самого в себя (проективные преобразования есть те, к-рые переводят прямые в прямые, конформные - те, к-рые сохраняют углы).

Возможно чисто аналитич. определение модели Л. г. Напр., точки плоскости можно определять как пары чисел x, у, прямые можно задавать уравнениями, движения - формулами, сопоставляющими точкам (х, у) новые точки (x', у'). Это будет абстрактно определённая аналитич. геометрия на плоскости Лобачевского, аналогично аналитич. геометрии на плоскости Евклида. Т. к. Лобачевский дал основы своей аналитич. геометрии, то тем самым он уже фактически наметил такую модель, хотя полное её построение выяснилось уже после того, как на основе работ Клейна и других выявилось само понятие о модели. Другое аналитич. определение Л. г. состоит в том, что Л. г. определяется как геометрия риманова пространства постоянной отрицательной кривизны (см. Рима- новы геометрии). Это определение было фактически дано ещё в 1854 Б. Рима- ном и включало модель Л. г. как геометрии на поверхностях постоянной кривизны. Однако Риман не связал прямо своих построений с Л. г., а его доклад, в к-ром он о них сообщил, не был понят и был опубликован лишь после его смерти (в 1868).

Содержание геометрии Лобачевского. Лобачевский строил свою геометрию, отправляясь от осн. геометрич. понятий и своей аксиомы, и доказывал теоремы геометрич. методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, т. к. именно здесь начинается отличие Л. г. от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют т. н. абсолютную геометрию, к к-рой относятся, напр., теоремы о равенстве треугольников. Вслед за теорией параллельных строились др. отделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. Приведём неск. фактов Л. г., отличающих её от геометрии Евклида и установленных самим Лобачевским.

1) В Л. г. не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, напр., сторона правильного треугольника с данной суммой углов.

2) Сумма углов всякого треугольника меньше я и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность я - (a -f- 3 + -у), где а, |3, 7 - углы треугольника, пропорциональна его площади.

3) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние Ь, Ь', к-рые и наз. параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) a общий конец (к-рый по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол а между прямой Ъ (или Ь') и перпендикуляром из О на а - т. н. угол параллельности - по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель Ь с одной стороны (а 6' с противоположной) асимптотически приближается к а, а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, к-рые не достигают другой прямой.

5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

8) Длина окружности не пропорциональна радиусу, а растёт быстрее.

9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрич. соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Напр., чем меньше треугольник, тем меньше сумма его углов отличается от я; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2я, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Л. г. переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле "предельный" случай Л. г.

Л. г. продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрич. идеям. В целом Л. г. является обширной областью исследования, подобно геометрии Евклида.

Приложения геометрии Лобачевского.

Сам Лобачевский применил свою геометрию к вычислению определённых интегралов. В теории функций комплексного переменного Л. г. помогла построить теорию автоморфных функций. Связь с Л. г. была здесь отправным пунктом исследований Пуанкаре, к-рый писал, что "неевклидова геометрия есть ключ к решению всей задачи". Л. г. находит применение также в теории чисел, в её геометрич. методах, объединённых под названием "геометрия чисел" (см. Чисел теория). Была установлена тесная связь Л. г. с кинематикой специальной (частной) теории относительности (см. Относительности теория). Эта связь основана на том, что равенство, выражающее закон распространения света
[1409-2.jpg]
при делении на t2, т. е. для скорости света, даёт - уравнение
[1409-3.jpg]
сферы в пространстве с координатами
[1409-4.jpg]
- составляющими скорости по осям x, у, z (в "пространстве скоростей"). Лоренца преобразования сохраняют эту сферу и, т. к. они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с, т. е. для скоростей, меньших скорости света, имеет место Л. г.

Замечательное приложение Л. г. нашла в общей теории относительности (см. Тяготение). Если считать распределение масс материи во Вселенной равномерным (это приближение в космич. масштабах допустимо), то оказывается, что при определённых условиях пространство имеет Л. г. Т. о., предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

Лит.: Лобачевский Н. И.. Сочинения по геометрии, М.- Л., 1946-49 (Полн. собр. соч., т. 1-3); Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей, М., 1956; Александров П. С., Что такое неевклидова геометрия, М., 1950; Д е л о н е Б. Н., Элементарное доказательство непротиворечивости планиметрии Лобачевского, М., 1956; Широков П. А., Краткий очерк основ геометрии Лобачевского, М., 1955; Каган В. Ф., Лобачевский и его геометрия. Общедоступные очерки, М., 1955; его же. Геометрия Лобачевского и ее предистория, М.- Л., 1949 (Основания геометрии, ч. 1); Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Погорелое А. В., Основания геометрии, 3 изд., М., 1968; РозенфельдБ. А., Неевклидовы пространства, М., 1969; Нут Ю. Ю., Геометрия Лобачевского в аналитическом изложении, М., 1961; Андриевская М. Г., Аналитическая геометрия в пространстве Лобачевского, К., 1963. А. Д. Александров.
1409.htm
ЛОГАРИФМ числа N по основанию а, показатель степени т, в которую следует возвести число а (основание Л.), чтобы получить N; обозначается logaN. Итак, т = logaN, если а™ = N. Напр., log.о 100 = 2; Iog2 -32" = -5; loga I =0, т. к. 100 =102, -32" = 2-5, 1= аО. При отрицательных а бесконечно много положительных чисел не имело бы действительных логарифмов, поэтому берётся а > 0 и а ?-. 1. Из свойств логарифмической функции вытекает, что каждому положительному числу соответствует при данном основании единств, действительный Л. (логарифмы отрицательных чисел являются комплексными числами). Осн. свойства Л.:

.[1409-5.jpg]
позволяют сводить умножение и деление чисел к сложению и вычитанию их Л., а возведение в степень и извлечение корня - к умножению и делению Л. на показатель степени или корня, т. е. к более простым действиям.

Когда основание а фиксировано, говорят об определённой системе Л. В соответствии с десятичным характером нашего счёта наиболее употребительны десятичные Л. (а = 10), обозначаемые lg N. Для рациональных чисел, отличных от 10" с целым k, десятичные Л. суть трансцендент