БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481и.) или иметь отверстие для крепления на оправках (насадные М. и.).

В зависимости от технологич. назначения станочный М. и. делится на следующие подгруппы: резцы, фрезы, протяжки, зуборезный, резьбонарезной, для обработки отверстий, абразивный и алмазный инструмент. Резцы, применяемые на токарных, токарно-револьверных, карусельных, расточных, строгальных, долбёжных и др. станках (за исключением резьбовых и зуборезных резцов), служат для обточки, расточки отверстий, обработки плоских и фасонных поверхностей, прорезания канавок. Фрезы - многолезвийный вращающийся М. и. используют на фрезерных станках для обработки плоских и фасонных поверхностей, а также для разрезки заготовок. Протяжки - многолезвийный инструмент для обработки гладких и фасонных внутренних и наружных поверхностей. Для образования и обработки отверстий используют свёрла, зенкеры, зенковки, развёртки, цековки, расточные пластины, комбинированный инструмент, к-рый применяют на сверлильных, токарных, револьверных, расточных, координатно-расточных и др. станках. Зуборезный инструмент предназначен для нарезания и обработки зубьев зубчатых колёс, зубчатых реек, червяков. Резьбонарезной инструмент служит для получения и обработки наружных и внутренних резьб. Номенклатуру резьбонарезного инструмента составляют также резьбовые резцы и фрезы, метчики, плашки и др. К абразивному инструменту относятся шлифовальные круги, бруски, хонинговальные головки, наждачные полотна и др., применяемые для шлифования, полирования, доводки деталей, а также для заточки инструмента. Алмазный инструмент составляют круги, резцы фрезы с алмазными пластинами и др. (см. Инструмент алмазный).

Станочный металлорежущий инструмент: / - резец с механическим креплением пластинки твёрдого сплава; 2 - винтовое сверло; 3 - зенкер с коническим хвостовиком, оснащённый твердосплавными пластинками; 4-торцевая насадная фреза со вставными ножами, оснащёнными твёрдым сплавом; 5 -машинная развёртка с твердосплавными пластинками; 6 - плашка; 7 - винторезная головка с круглыми гребёнками; 8 - червячная фреза; 9 -шлицевал протяжка; 10 -резцовая головка для обработки конических колёс с круговым зубом; / / - метчик; /2 - зуборезный долбяк со спиральными зубьями.

К ручным инструментам относятся зубила, напильники, надфили, ножовки, шаберы и др., используемые без применения металлорежущего оборудования. Получили распространение ручные машины с электрич., гидравлич. и пневма-тич. приводом, рабочим органом к-рых являются ручные инструменты.

Форма и углы заточки режущей части М. и. (см. Геометрия резца), от которых зависят его стойкость, производительность, экономичность, качество обработки, выбираются с учётом свойств обрабатываемого материала, смазывающе-ох-лаждающей жидкости, жёсткости системы станок - приспособление - инструмент -деталь и т. д. Режущая способность М. и. определяется свойствами материала, из к-рого изготовлена его режущая часть. Наиболее существенным показателем является красностойкость материала. Применяют следующие осн. группы материалов: инструментальные стали (углеродистые, быстрорежущие, легированные), твёрдые сплавы, минерало-керамич. сверхтвёрдые материалы. Инструмент из углеродистых сталей (красностойкость 200-250°С) используют для обработки обычных материалов при небольших скоростях резания. Быстрорежущие стали, легированные вольфрамом, позволяют увеличить скорость резания в 2-4 раза. Для обработки заготовок из жаропрочных сплавов и сталей повышенной прочности применяют инструмент из стали с увеличенным содержанием ванадия, кобальта, молибдена и пониженным содержанием вольфрама. Красностойкость этих сталей достигает 600-620 °С, но одновременно возрастает их хрупкость. Твёрдые сплавы - наиболее прогрессивные и распространённые материалы для М. и., вытесняющие инструментальные стали (кроме случаев прерывистого точения и фасонного фрезерования с большой глубиной), обладают красностойкостью 750-900°С и высокой износостойкостью. Твёрдые сплавы для М. и. выпускаются в виде пластинок различной формы и размеров. Изготовляют также монолитные твердосплавные М. и. небольших размеров. Ещё более высокими красностойкостью (1100-1200 °С) и износостойкостью обладают М. и. с режущей частью, армированной минералокерамич. пластинками, изготовленными на основе окиси алюминия с добавлением молибдена и хрома. Однако применение минералокерамики ограничивается её низкой пластичностью и большой хрупкостью. Перспективным является применение сверхтвёрдых материалов - естественных и синтетических алмазов, кубического нитрида бора и др. (для шлифования и затачивания М. и.).

Технологич. параметры М. и. зависят от глубины резания, подачи, скорости резания (см. Обработка металлов резанием). Критерием износа режущей части М. и. принято считать ширину изношенной площадки на задней поверхности инструмента с учётом вида инструмента требуемой точности обработки и класса чистоты. Стойкость М. и. определяется продолжительностью (в мин) непосредственного резания между переточками. Гл. требование к М. и.- высокая производительность при заданных классах чистоты и точности обработки - обеспечивается выполнением условий в отношении допусков на изготовление, отклонений геометрич. параметров, твёрдости режущей части, внеш. вида и т. д. Конструкция М. и. должна предусматривать возможность многократных переточек, надёжное и быстрое крепление. При проектировании металлорежущего оборудования учитываются спец. элементы для крепления М. и.: резцедержатели, конусные отверстия, оправки и т. п.

При создании новых конструкций М. и. стремятся усовершенствовать их геометрич. параметры и конструктивные элементы, а также использовать материалы с повышенными режущими свойствами и новые материалы. Решение этих проблем позволяет повысить стойкость М. и. (в т. ч. размерную), улучшить дробление стружки, в частности для автома-тич. линий и станков с программным управлением. Важное значение имеют исследования физич. закономерностей изнашивания инструмента, его геометрич. параметров, изыскание новых смазочно-охлаждающих жидкостей. С вопросами произ-ва М. и. тесно связано создание новых конструкций станков, внедрение современных электрохимических и электрофизических методов для обработки твердосплавного инструмента. См. также Инструментальная промышленность.

Лит.: Грановский Г. И., Металлорежущий инструмент, 2 изд., М., 1954; Четвериков С. С., Металлорежущие инструменты, 5 изд., М., 1965; Ж и г а л-к о Н. И., Киселёв В. В., Проектирование и производство режущих инструментов, Минск, 1969; Справочник технолога-машиностроителя, 3 изд., т. 1 - 2, М., 1972.

МЕТАЛЛОРЕЖУЩИЙ СТАНОК, машина для обработки резанием металлических и др. материалов, полуфабрикатов или заготовок с целью получения из них изделий путём снятия стружки металлорежущим инструментом.

М. с. являются осн. видом оборудования в машиностроении, приборостроении и др. отраслях пром-сти. Совершенствование М. с. предопределяет научно-технический прогресс, развитие технологии и организации машиностроительного произ-ва.

Историческая справка. Обработка материалов резанием известна с древних времён: деталь вращали вручную, обработка велась кремнёвым резцом. В 12 в. появились токарные и сверлильные станки с ручным приводом, а в 14 в.- с приводом от водяных мельниц. Механич. станки для токарных работ изготовлялись гл. обр. в Италии, Франции, откуда были завезены в Россию. Медальерными станками славились петерб. мастера. В 1711 в Россию из Флоренции привезли станок, сделанный мастером Зингером, приглашённым на службу Петром I. В придворной токарне были изготовлены станки, в разработке конструкций и создании к-рых принимал участие А. К. Нартов. Позднее Нартов построил другие станки (гравёрные, копировальные, гильотинные), ему же принадлежит создание первого в мире токарно-винто-резного станка с механическим суппортом и сменными зубчатыми колёсами (1738). Основные промышленные типы М. с. разрабатывались позднее (Г. Модели и др.) в Великобритании, первой вступившей на путь капиталистич. развития. В дальнейшем конструкция их совершенствовалась в Германии, Франции, Швейцарии (точное станкостроение), позже (во 2-й пол. 19 в.) в США (в частности, автоматич. станки для массового произ-ва). В России в 1712-14 на Тульском оружейном з-де мастер Я. Батищев создал прототип совр. агрегатных станков для одноврем. сверления 24 ружейных стволов, в 1714 В. И. Геннин построил на Олонецких з-дах многопозиционный станок. Значит, вклад в развитие конструкции М. с. внёс М. В. Ломоносов, к-рый в сер. 18 в. построил и применил в своих мастерских оригинальные шлифовальные и др. станки. Вклад в создание новых конструкций станков внесли также рус. инженеры и изобретатели И. Осипов, М. Сидоров, И. Ползунов, И. Кулибин, П. Захаво (первые автоматы для нарезания резьбы, 1810), В. Игнатов, Г. Горохов. Но несмотря на отд. выдающиеся изобретения, станкостроение в царской России развивалось медленно. Только после Великой Окт. социалистич. революции в процессе индустриализации маш.-строит. предприятия стали получать новые станки. В 1932 з-д "Красный пролетарий" выпустил первый соврем, токарно-винторезный станок. В 1933 основан Экспериментальный н.-и. ин-т металлорежущих станков (ЭНИМС), где было начато проектирование новых типов станков, изготовление гамм станков токарных, револьверных, сверлильных, фрезерных и др. К 1970 в СССР освоено 1817 типоразмеров М. с. Годовой выпуск составил 230 тыс. станков.

Большая заслуга в развитии станкостроения в СССР принадлежит сов. учёным В. И. Дикушину, Н. С. Ачеркану, Д. Н. Решетову, А. П. Владзиевскому, Б. С. Балакшину, Г. М. Головину, Г. А. Шаумяну, В. С. Васильеву, А. С. Проникову, В. А. Кудинову, А. С. Брит-кину, Б. Л. Богуславскому, конструкторам Н. А. Волчеку, В. Н. Кедринскому, И. А. Ростовцеву, Ю. Б. Эрпшеру и др.

Совершенствование произ-ва М. с. идёт в неск. направлениях. Намечается увеличение выпуска агрегатных автоматич. и полуавтоматич. М. с. и автоматич. линий, обеспечивающих автоматизацию тех-нологич. процессов в крупносерийном и массовом произ-ве (в СССР выпуск таких М. с. за период 1966-70 увеличился на 22,6% при общем росте выпуска М. с. за этот период на 12%). В 1973 выпущено 211 тыс. М. с. Перспективно освоение прецизионных станков, обусловливающих высокую точность и качество обработки деталей. Предусматривается дальнейшее расширение произ-ва М. с. с числовым программным управлением (ЧПУ) для обеспечения автоматизации механич. обработки изделий в индивидуальном и серийном произ-ве. В 1968-70 в серийном произ-ве освоено 23 типоразмера таких станков, в 1970-15 типов опытных образцов; их выпуск в 1973 составил 3800 шт. Внедрение М. с. с использованием адаптивных систем управления (см. Самоприспосабливающаяся система) открывает новые пути повышения точности обработки и производительности. Для удовлетворения разнообразных потребностей нар. х-ва намечается увеличение числа типов тяжёлых уникальных станков. К 1970 создано ок. 500 типов тяжёлых уникальных М. с.

Классификация М. с. По специализации различают М. с. универсальные для выполнения разнообразных операций на изделиях широкой номенклатуры; широкого назначения для выполнения ограниченного числа операций на изделиях широкой номенклатуры; специализированные для обработки однотипных изделий разных размеров; специальныe для обработки изделий одного типоразмера; агрегатные -специальные, состоящие из нормализованных деталей, узлов, силовых головок.

М. с. могут быть с ручным управлением (загрузка и установка заготовок, пуск, переключение режима обработки, холостые движения, снятие изделия -вручную), а также иметь различную степень автоматизации: полуавтоматы (установка заготовок, пуск, снятие изделия -вручную, остальные движения цикла обработки - автоматически), автоматы (все рабочие и холостые движения производятся автоматически, человек осуществляет контроль за циклом работы); могут составлять автоматические линии (группа автоматов, объединённая системой транспортировки заготовок от одного к другому); иметь числовое программное управление (все рабочие и холостые движения обеспечиваются заранее закодированной программой, введённой в М. с. и посылающей преобразованные импульсы на исполнительные и управляющие механи