БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481митроном. Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 амер. инженеры Д. Уилбур и Ф. Питере. Ими же в 1950 был предложен М., н. н., с центр, катодом и в 1955 - с вынесенной в торец электронной пушкой. М., н. н., выходной мощностью до 1 вт широко применяются в измерит, радиоаппаратуре, в гетеродинах широкополосных радиоприёмников с быстрой перестройкой частоты и в качестве задающих генераторов в радиолокац. станциях, 1 - 10 вт - в радиовысотомерах, телемет-рич. аппаратуре и др. устройствах, где требуется режим частотной модуляции в широкой полосе генерируемых частот, св. 10 вт - в широкополосных радиопередатчиках, телевизионных и телеметрия, устройствах бортовых систем и др. В 50-60-х гг. 20 в. было выпущено много типов М., н. н., работающих на частотах 0,2-10 Ггц. М., н. н., с выходной мощностью до 1 era (включительно) имеют диапазон перестройки частоты примерно 1-1,5 октавы, 1-10 вт - до 50% от средней частоты, 10-500 вт - до 10-20%. Кпд маломощных М., н. н., как правило, не превышает 10%, а наиболее мощных достигает 70%.

От обычного многорезонаторного магнетрона М., н. н,, отличается пониженной добротностью колебательной системы и уменьшенной силой электронного тока в пространстве взаимодействия. Колебат. система М., н. н. (рис.), представляет собой цилиндрич. анод, выполненный в виде встречных штырей, встроенных в объёмный резонатор, или отрезок линии, напр, отрезок радиоволновода, полосковой линии и др. Уменьшение силы тока в пространстве взаимодействия М., н н., достигается либо путём недо-грева катода (ограничение эмиссии электронов темп-рой), либо применением торцевой электронной пушки и заменой центр, эмитирующего катода неэмитирующим электродом. Распространён второй способ, т. к, он позволяет посредством управляющего электрода изменять силу тока и, следовательно, мощность М., н. н. Так же, как и в многорезонаторном магнетроне, при генерировании колебаний электронные сгустки движутся с такой тангенциальной скоростью, что за один полупериод колебаний перемещаются на расстояние, равное шагу анодной штыревой системы. Это условие синхронизма выражается следующей линейной зависимостью между анодным напряжением Ua (в) и рабочей частотой

Схематическое изображение магнетрона, настраиваемого напряжением: 1 - анод в виде системы встречных штырей; 2 - неэмнтирующий __ электрод; 3 - катод; 4 - управляющий электрод; 5 - керамические цилиндры вакуумплотной оболочки; 6 - низко добротный объёмный резонатор; 7 - экранирующий магнитопроводящий кожух; 8 - постоянный магнит; 9 - коаксиальный вывод энергии; 10 - элемент связи вывода энергии с объёмным резонатором; Супр- источник управляющего напряжения; Ua - источник анодного напряжения..

[1512-1.jpg]

где В - индукция магнитного поля (гс); N - число штырей; rа и rk - соответственно радиусы анода и центрального неэмитирующего электрода (см).

Лит.: Стальмахов В. С., Основы электроники сверхвысокочастотных приборов со скрещенными полями, М., 1963, с. 254-77; Дятлов Ю. В., Козлов Л. Н., Митроны, М., 1967. И. В. Соколов.

МАГНЕТРОННОГО ТИПА ПРИБОРЫ, класс электровакуумных приборов СВЧ (300 Мгц - 300 Ггц), в к-рых движение электронов происходит в скрещенных постоянных электрич. и магнитном полях и электромагнитном поле СВЧ. М. т. п. используются для генерирования и усиления колебаний в радиолокац. и навигац. устройствах, устройствах космич. связи, линейных ускорителях, мед. аппаратах, установках нагрева токами СВЧ и т. д. В М. т. п. постоянное электрическое поле создаётся в промежутке анод - катод (т. н. пространство взаимодействия), а постоянное магнитное поле - перпендикулярно силовым линиям постоянного электрич. поля и направлению движения электронов (в М. т. п. цилиндрич. конструкции - вдоль оси катода). Условия обратной связи между электромагнитным полем и электронным потоком, необходимые для самовозбуждения колебаний в М. т. п., легко выполняются. Благодаря обратной связи электроны, к-рые в результате взаимодействия с электромагнитным полем отдают ему часть своей энергии, приобретённой от источника постоянного напряжения, смещаются к аноду и в итоге попадают на него, а те электроны, к-рые отбирают от электромагнитного поля часть энергии, возвращаются на катод, бомбардируя, его. Явление электронной бомбардировки используется в нек-рых мощных М. т. п. для поддержания необходимой темп-ры катода. Для осуществления эффективного и длительного взаимодействия электронов с электромагнитным полем должна соблюдаться синхронность их движения, т. е. равенство скорости переносного движения электронов veс фазовой скоростью бегущей волны поля.

М. т. п. обладают свойством многофункциональности, т. е. эффективно работают в разных электрич. режимах и условиях эксплуатации, и высоким кпд (до 90% ); способны генерировать и усиливать колебания в весьма широкой области электромагнитных волн (от метровых до миллиметровых волн), генерировать колебания большой мощности (до неск. сотен квт непрерывной и до неск. десятков Мвт импульсной мощности) при относительно низких анодных напряжениях (до 50 же), перестраиваться по частоте в широком диапазоне (до 20% механическим и до 100% электрич. способами), усиливать колебания в широкой полосе частот (до 20% и более) при достаточно больших коэфф. усиления (до 20 дб и более).

Прототипом всех М.т.п. является многорезонаторный магнетрон - наиболее известный прибор этого класса (см. рис.).

Упрощённое изображение пространства взаимодействия магнетрона: а - распределение высокочастотного электрического поля при колебаниях л-вида; б - форма электронного облака при колебаниях я-вида. 1 - замедляющая система (анод); 2 - катод; 3 - граница электронного облака; 4 - форма траекторий электронов; Е - силовые линии постоянного электрического поля; Е - силовые линии электрического поля СВЧ; В - силовые линии индукции магнитного поля; vе - скорость переносного движения электронов.

На магнетронном принципе взаимодействия электронного потока с электромагнитным полем создано множество разновидностей приборов (генераторов и усилителей), различающихся конструктивным исполнением замедляющих систем и устройств формирования электронного потока. В соответствии с этими признаками различают 3 семейства М. т. п.:

1) с замкнутыми В кольцо замедляющей системой и электронным потоком (с катодом в пространстве взаимодействия);

2) с электрически разомкнутой замедляющей системой и замкнутым в кольцо электронным потоком (с катодом в пространстве взаимодействия); 3) с замкнутыми или разомкнутыми замедляющими системами и инжектированным электронным потоком (с катодом, вынесенным из пространства взаимодействия).

К первому семейству приборов гл. обр. относятся: многорезонаторный магнетрон, или магнетрон бегущей волны, в к-ром замедляющая система обладает ярко выраженными резонансными свойствами, т. е. колебания возбуждаются на дискретных частотах, рабочим видом колебаний является т. н. л-вид или я/2-вид, возможна перестройка частоты колебаний механическим или электрическим способом в небольших пределах (3-10% ); коаксиальный магнетрон (разновидность многорезонаторного магнетрона) с перестройкой частоты (до 20% ) и стабилизацией её посредством внеш. или внутр. высокодобротного объёмного резонатора, аксиального с резонаторной системой магнетрона и возбуждаемого на волне типа Нои; регенеративно-усилительный магнетрон, в к-ром возбуждение колебаний л-вида и управление их частотой осуществляется внеш. сигналом малой мощности, вводимым обычно через цнркулятор в сильно нагруженную резонаторную систему; магнетрон, настраиваемый напряжением (митрон), в к-ром сильно нагруженная колебат. система (обычно стержневого типа) обладает слабо выраженными резонансными свойствами и ток эмиссии катода ограничен, вследствие чего на малых уровнях мощности достигается перестройка частоты напряжением в широком диапазоне (до одной октавы и более).

Ко второму семейству приборов гл. обр. относятся: кар матрон - генератор обратной волны, в к-ром обычно используется замедляющая система стержневого типа (чаще типа -"встречные штыри") с поглотителем энергии внутри и частота колебаний перестраивается напряжением; амплитрон - мощный усилитель обратной волны с согласованными входным и выходным устройствами и полосой усиливаемых частот до 10% от средней частоты (при отражениях энергии СВЧ на входе и выходе и температурном ограничении тока эмиссии амплитрон может работать как автогенератор с перестройкой частоты); стабилотрон- высокостабильный генератор с механич. перестройкой частоты, состоящий из амплитрона, делителя мощности отражающего типа, фазовращателя и высокодобротного стабилизирующего резонатора (в литературе часто встречается термин платинотрон как обобщённое название для амплитрона и стабилотрона); у л ь т р о н - усилитель прямой волны с более широкой полосой усиливаемых частот (до 20% ) и более высоким коэфф. усиления (до 30 дб), чем у амплитрона.

К третьему семейству приборов гл. обр. относятся: лампа обратной волны магнетронного типа (ЛОВМ) с перестройкой частоты генерируемых колебаний напряжением в широком диапазоне (до 20%); лампа бегущей волны магнетронного типа (ЛБВМ) с широкой полосой усиливаемых частот (до 20% ) и высоким коэфф. усиления (до 20 дб).

Лит.: Электронные сверхвысокочастотные приборы со скрещенными полями, пер. с англ., т. 1 - 2, М.. 1961: Лебедев И. В., Техника и приборы сверхвысоких частот, т. 2, М.- Л., 1972; ГОСТ 17104-71. Приборы магнетронного типа. Термины и определения, M.i 1971. Д. Е. Самсонов.

МАГНЕТРОННЫЙ МАНОМЕТР, вакуумметр, по своему устройству напоминающий магнетрон. Существуют ионизационные М. м. (манометр Лафферти) и электроразрядные. Диапазон измерений ионизац. М. м.: 10-5 - 10-11 н/м2 (10-7 - 10-13 мм 'рт. ст.), электроразрядного - 10-2 - 10-9 н/м2 (10-4 - 10-11 мм рт. ст.). См. Вакуумметрия.

МАГНИЕВЫЕ РУДЫ, природные минеральные образования, содержание магния в к-рых достаточно для экономически выгодного его извлечения. Этот элемент входит в состав более ста минералов, в т. ч.: брусита Mg(OH)2 с содержанием Mg 41,7% ; магнезита MgCCb (28,8% Mg); доломита MgCО3 х СaCО3, (18,2% Mg); кизерита MgSO4 х H2O (17,6% Mg); бишофита MgCl2-6H2О (12,0% Mg); лангбейнитa 2MgSО4 х K2SO4 (11,7% Mg); эпсомита MgSO4 х 7H2O (9,9% Mg); каинита MgS4 х KCl х 3H2O (9,8% Mg); карналлита MgCl2 х KCl х 6H2O (8,8% Mg); астраханита MgSO4 х Na2SO4 х 4H2O (7,3% Mg); полигалита MgSO4 х 2CaSO4 х K2SO4 х 2H2O (4,2% Mg).

Главнейшими М. р. являются месторождения ископаемых магнезиально-калийных солей. Крупные месторождения магнезита встречаются в метаморфизованных доломитах. При контактном метаморфизме магнезита возникают скопления брусита - наиболее высокомагнезиального сырья. В результате выщелачивания магнезиальных солей подземными водами образуются ископаемые природные рассолы и соляные источники. Совр. соляные месторождения (рассолы и осадки) возникают в замкнутых заливах морей (напр., Кара-Богаз-Гол) и в бессточных внутриматериковых впадинах (оз. Баскунчак и Эльтон в СССР, Большое Солёное озеро в США). В качестве источника Mg непрерывно возрастает также роль морской воды (4% Mg в сухом остатке) с её стабильным составом и неограниченными ресурсами. В СССР располагаются крупнейшие бассейны магнезиально-калийных солей - Верхнекамский (пермского возраста) в Предуралье, Припятский (девонский) в Белоруссии, Калушское (неогеновое) месторождение в Предкарпатье и др. За рубежом особенно известны пермские Штасфуртский соленосный бассейн (ФРГ и ГДР) и месторождения юга США. См. также Магнии.

Лит.: Курс месторождений неметаллических полезных ископаемых, М., 1969; Требования промышленности к качеству минерального сырья, в. 22 - Кашкаров О. Д., Ф и в е г М. П., Калийные и магнезиальные соли, М., 1963: С м о л и н П. П., Тенденции использования магнезиального сырья, в сб.: Неметаллические полезные ископаемые, М., 1971. П. П. Смолин.

МАГНИЕВЫЕ СПЛАВЫ, сплавы на основе магния. Наиболее прочные, в т. ч. и наиболее жаропрочные, М. с. разработаны на основе систем магний - металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов, пригодны