БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481х для легирования М. с., сравнительно невелик. М. с. разделяются на 2 осн. группы: литейные - для произ-ва фасонных отливок и деформируемые - для произ-ва полуфабрикатов прессованием, прокаткой, ковкой и штамповкой.

Историческая справка. Первые М. с. появились в нач. 20 в. (под назв. "электрон", теперь мало употребляемым). Значение конструкционных пром. материалов М. с. приобрели в кон. 20-х - нач. 30-х гг. 20 в., т. е. почти через 100 лет после того как франц. химик А. Бюсси впервые выделил магний в чистом виде (1828). До конца 40-х гг. применялись гл. обр. сплавы на основе систем Mg - А1 - Zn и Mg - Mn. Дальнейшему прогрессу в области создания М. с. способствовало открытие модифицирующего и рафинирующего действия циркония. В 50-х гг. начали применяться сплавы на основе систем Mg - Zn - Zr, Mg - p. з. м. (редкоземельный металл) - Zr (или Мn), Mg - Th, а также сверхлёгкие сплавы на основе системы Mg - Li. Произ-во и потребление магния и М. с. возрастает. Мировое произ-во магния к нач. 2-й мировой войны 1939-45 составило ок. 50 тыс. т, в 1969 ~ 2 млн. т, из них ~ 40-50% расходуется на произ-во отливок и деформированных полуфабрикатов.

Химический состав наиболее широко применяемых в СССР М. с. дан в табл. 1. В пром. М. с. содержатся добавки Al, Zn, Mn, Zr и редкоземельных металлов (цериевый мишметалл, La, Nd, Y), Th, Ag, Cd, Li, Be и др. Общее количество добавок в наиболее легированных М. с. достигает 10-14%. Вредными примесями являются Ni, Fe, Si и Си, которые снижают коррозионную стойкость М. с. В М. с. с Zr ограничивают содержание примесей А1 и Si, т. к. в присутствии этих элементов Zr не растворяется в расплавленном магнии, образуя с ними тугоплавкие нерастворимые соединения. Растворимость циркония в магнии уменьшают также примеси Fe, Mn и Н. Малые количества Be (иногда Са) используют в качестве тех-нологич. добавок для снижения окисляе-мости М. с. в расплавленном состоянии.

Физические свойствам, с даны в табл. 2. М. с. являются самым лёгким металлич. конструкционным материалом. Плотность (d) M. с. в зависимости от состава колеблется в пределах 1360-2000 кг/м3. Наименьшую плотность имеют магнийлитиевые сплавы. Плотность наиболее широко применяемых М. с. равна 1760-1810 кг/м3, т. е. примерно в 4 раза меньше плотности стали и в 1,5 раза меньше плотности алюминиевых сплавов. Благодаря малой плотности детали из М. с. обладают высокой жёсткостью: относит, жёсткость при изгибе двутавровых балок одинаковой массы и ширины для стали равна 1, для алюминия 8,9, для магния 18,9. М. с. имеют высокую удельную теплоёмкость. Темп-ра поверхности детали из М. с. при одинаковом количестве поглощённого тепла в 2 раза ниже по сравнению с темп-рой детали из малоуглеродистой стали и на 15-20% ниже, чем детали из алюминиевого сплава. Коэфф. термич. расширения М. с. в среднем на 10-15% больше, чем у алюминиевых сплавов.

Табл. 1, - Химический состав и механические свойства наиболее широко применяемых в СССР магниевых сплавов (1 Мн/м2 = 0,1 кгс/мм2)

Тип сплава

Химический состав, %
основные компоненты

примеси, не более
Al

Zn


Mn

Zr

Nd

Al

Si

F

Ni

Сa

Мn

Be

Са
Литейные сплавы
Mg - Al - Zn

8

0,5


0,2


-


-


-

0,25

0,06

0,01

0,1


-

0,002

0,1


8

0,5


0,2


-


-


-

0,08

0,007

0,001

0,004


-

0,002


-
Mg - Zn - Zr


-


4,5


-

0,7


-

0,02

0,03

0,01

0,005

0,03

-

0,001


-
Mg - Nd - Zr


-


0,4


-

0,7

2,5

0,02

0,03

0,01

0,005

0,03


-

0,001


-
Дeфоpмируемые сплавы
Mg - Al - Zn

4

0,5


0,5


-


-


-

0,15

0,05

0,005

0,05


-

0,02

0,1
Mg - Zn - Zr


-


-


-

0,5


-

0,05

0,05

0,05

0,005

0,05

0,1

0,02


-


Тип сплава

Сумма определяемых

примесей

Механические свойва при 20 оС

Вид термической

обработки

Предельные рабочие
тем-ры, °С

Назначение
Мн/м2

Мн/м2

длительно

кратковременно
G 0,2

Gb


б, %
Литейные сплавы
Mg - Al - Zn

0,5

90

280

9

Закалка; закалка и старение

150

250


Сплав общего назначения




0,14

90

280

9

То же

150

250


То же, имеет повышенную коррозионную стойкость
Mf> - Zn - Zr

0,2

150

300

6

Отпуск

200

250


Нагруженные детали (барабаны колёс, реборды и др.)
Mg- Nd - Zr

0,2

150

280

5

Закалка и старение

250

350


Жаропрочный сплав. Нагруженные детали; детали, требующие высокой герметичности, стабильности размеров
Деформируемые сплавы
Mg - Al - Zn

0,3

180 .

290

100

Отжиг

150

200


Панели, штамповки сложной конструкции, сварные конструкции
Mg - Zn - Zr

0,3

250-300

310- 350

100-140

Старение

100

150


Высоконагруженные детали из прессованных полуфабрикатов, штамповок и поковок




Механические свойства наиболее широко применяемых в СССР пром. М. с. представлены в табл. 1.

Макс, уровень механич. свойств литейных М. с. достигнут на высокопрочных сплавах системы Mg - Zn - Ag - Zr: предел текучести ао,2 = 260-280Мн/м2 (26-28 кгс/мм2), предел прочности аь = 340-360 Мн/м2 (34-36 кгс/мм2), относительное удлинение 6 = 5%. Спец. технологич. приёмы (напр., подштамповка) позволяют увеличить бb до 400-420 Мн/м2(40-42 кгс/мм2). Уровень свойств самых высокопрочных деформируемых М. с.: ао,2 = 350 Мн/м2(35 кгс/мм2), аь = 420 Мн/м2 (42 кгс/мм2), б=5%. Предельная рабочая температура высокопрочных сплавов 150 °С. Самые жаропрочные М. с. (литейные и деформируемые) систем Mg -р. з. м. и Mg - Th пригодны для длит, эксплуатации при 300-350 °С и кратковременной - до 400 °С. По удельной прочности (бb/d) высокопрочные литейные М. с. имеют преимущества по сравнению с алюминиевыми сплавами, самые высокопрочные деформируемые находятся на одном уровне с наиболее высокопрочными деформируемыми алюминиевыми сплавами (или несколько уступают им). Модуль упругости М. с. равен 41 - 45 Гн/м2(4100-4500 кгс/мм2) (3/5 модуля алюминиевых сплавов, Vs модуля сталей), модуль сдвига составляет 16- 16,5 Гн/м2 (1600-1650 кгс/мм2). При низких темп-pax модуль упругости, пределы текучести и прочности М. с. увеличиваются, а удлинение и ударная вязкость снижаются; резкого падения пластичности, характерного для низколегированных конструкционных сталей, у М. с. не наблюдается.

Табл. 2. - Физические свойства наиболее широко применяемых в СССР магниевых сплавов

Тип сплава

Плотность,

кг/м3

Коэффициент линейного расширения при 20-100 °С а 106, 1/°С

Коэффициент теплопроводности , ет/м • К

Удельная теплоёмкость, кдж/кг • К

Удельное электросопротивлениер-106ом х см
Литейные сплавы
Mg - Al - Zn

J810

26,8

65

1,05

13,4
Mg - Zn - Zr

1810

26,2

134

0,98

6,6
Mg - Nd - Zr

1780

27,7

113

0,963

8,4
Деформируемые сплавы
Mg - Al - Zn

1790

26

83,8

1,05

12
Mg - Zn - Zr

1800

20,9

117

1,03

5,65

Технология. Вследствие большого сродства магния с кислородом при плавке М. с. в возд. атмосфере поверхность расплавленного металла защищают слоем флюса; в качестве флюсов применяют различные смеси фтористых и хлористых солей щелочных и щёлочноземельных металлов. Чтобы избежать горения металла при литье, в состав формовочных земель вводят защитные присадки, кокили окрашивают спец. красками, в состав к-рых входит, напр., борная к-та. Отливки получают всеми известными способами литья, в т. ч. литьём в песчаные, оболочковые, стержневые, гипсовые формы, литьём в кокиль, под давлением, по выплавляемым моделям, полужидкой штамповкой. Для получения качеств, отливок литниковая система строится по принципу расширяющегося потока. При затвердевании М. с. дают большую усадку (1,1-1,5). Благодаря мелкозернистой структуре отливки из М. с. с цирконием имеют более однородные и высокие механич. свойства, чем отливки из сплавов, легированных алюминием. Детали и узлы различных конструкций из деформируемых М. с. изготовляют механич. обработкой, сваркой и клёпкой, объёмной и листовой штамповкой. При комнатной темп-ре технологич. пластичность М. с. низкая, что объясняется гексагональным строением кристаллич. решётки магния (скольжение происходит по одной плоскости базиса). При высоких темп-рах (200- 450 °С) возникает скольжение по дополнит, плоскостям и технологич. пластичность большинства сплавов становится высокой. Поэтому все операции обработки давлением М. с. проводятся в нагретом состоянии при малых скоростях деформации. Исключение составляют М. с. с 10-14% Li, к-рые имеют объёмно-центрированную кубич. решётку и допускают обработку в холодном состоянии. При конструировании деталей из М. с. избегают острых надрезов и резких переходов сечений. Для соединения деталей применяют различные виды сварки, а также клёпку, пайку твёрдыми и мягкими припоями, склеивание. Сваркой исправляют дефекты литых деталей. Только сплавы с высоким содержанием цинка не подвергаются сварке. Большинство литых и деформированных полуфабрикатов из М. с. подвергается упрочняющей термич. обработке (закалке, старению) или отжигу для снятия внутр. напряжений (литейных, сварочных и др.). М. с. легко обрабатываются резанием - вдвое быстрее, чем алюминиевые сплавы, и в 10 раз быстрее, чем углеродистые стали. При работе с М. с. следует соблюдать правила пожарной безопасности.

Методы защиты от физико-химических воздействий. М. с. обладают пониженной коррозионной стойкостью из-за высокого электроотрицательного потенциала и недостаточных защитных свойств естеств. окисной плёнки. Защита М. с. от коррозии осуществляется искусственно создаваемыми хим. или электрохим. неорганич. плёнками в сочетании с лакокрасочными покрытиями. Покрытие состоит из грунтовочного пассивирующего слоя и внешних лаковых или эмалевых слоев. Надлежащая защита обеспечива