БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481ет надёжную работу деталей из М. с. в атм. условиях, щелочных средах, минеральных маслах, бензине, керосине. М. с. повышенной чистоты, особенно по содержанию железа и никеля, пригодны для эксплуатации в морском воздухе. М. с. неприемлемы для работы в мор. воде, в соляных растворах, кислотах, их растворах и парах. Коррозионная стойкость магниевых деталей в значит, степени зависит от выбора правильной конструктивной формы (исключающей скопление влаги) и такого сочетания контактирующих материалов в изделиях, к-рое не вызывает контактной коррозии. Нек-рые высокопрочные деформируемые М. с. склонны к коррозии под напряжением и могут применяться при условии ограничения величины длительно действующих растягивающих напряжений.

Консервация деталей и полуфабрикатов из М. с. осуществляется с помощью хроматных плёнок, жидких нейтральных обезвоженных масел, спец. смазки и др, способами в зависимости от длительности и условий хранения. Длит, хранение собранных изделий и запасных частей из М. с. с лакокрасочным покрытием в нормальных складских условиях производится в чехлах из полихлорвиниловой или полиэтиленовой плёнки с силикагелевым осушителем.

Применение. М. с. пригодны для работы при криогенных, нормальных и повышенных темп-pax. Благодаря малой плотности, высокой удельной прочности, способности поглощения энергии удара и вибрационных колебаний, отличной обрабатываемости резанием М. с. широко используются в пром-сти, прежде всего для снижения массы изделий, повышения их жёсткости. М. с. применяются в автомобильной, тракторной пром-сти (картеры двигателей, коробки передач, барабаны колёс и др. детали), в электротехнике и радиотехнике (корпуса приборов, детали электродвигателей), в оптич. пром-сти (корпуса биноклей, фотоаппаратов), в текст, пром-сти (бобины, шпульки, катушки), в полиграфии (матрицы, клише, валики), в судостроении (протекторы), в авиац. и ракетной технике (детали колёс, детали управления и крыла самолёта, корпусные детали двигателей) и во мн. др. отраслях техники. Промышленностью используются гл. обр. литые детали из М. с. Осн. ограничение в применении М. с.- пониженная коррозионная стойкость в нек-рых средах.

Лит.: Конструкционные материалы, т. 2, М., 1964 (Энциклопедия современной техники); Р е и н о р Г. В., Металловедение магния и его сплавов, пер. с англ., [М.], 1964; Альтман М. Б., Лебедев А. А. и Чухров М. В., Плавка и литье легких сплавов, 2 изд., М., 1969. Н. М. Тихова.

МАГНИЕВЫЕ УДОБРЕНИЯ, удобрения, содержащие магний. К М. у. относятся: калийно-магниевый концентрат, содержит 8-9% MgO и 17,7-19% К2О; эпсомит (технич. MgSO.i) - не менее 17,7% MgO; аммошенит [(NH4)2SO4-MgSO4-6H2O] - 10% MgO и 7% N; доломито-аммиачная селитра [смесь CaMg (CO3)2 и МН4NО3] - ок. 10% MgO, 17% N и 14% СаО; серпентинит (тонко измельчённая горная порода)-32 - 43% MgO; жжёная магнезия - не менее 89% MgO, а также доломит, магниевый плавленый фосфат, дунит, кали-магнезия, каинит и др. Норма М. у. на кислых песчаных и супесчаных почвах (особенно бедны магнием в усвояемой для растений форме) - 20-40 кг/га MgO. О магниевом голодании с.-х. культур судят по их внешним признакам (см. Диагностика питания растений).

МАГНИЕВЫЙ ЭЛЕМЕНТ, химич. источник тока с магниевым анодом. Катод преим. состоит из хлоридов серебра, свинца или меди. Электролитом служит обыкновенная пресная вода, морская вода или водные растворы солей. Эдс 1,65-1,0 в; удельная энергия 73- 120 вт х ч/кг, или 90-145 вт х ч/л. Батареи М. э. выпускаются и хранятся в сухом виде, перед эксплуатацией заливаются электролитом или на неск. мин погружаются в воду. Применяются гл. обр. в качестве резервных источников тока (см. Химические источники тока).

МАГНИЙ (лат. Magnesium), Mg, химич. элемент II группы периодич. системы Менделеева, ат. н. 12, ат. м. 24,305. Природный М. состоит из трёх стабильных изотопов: 24Mg (78,60%), 25Mg (10,11%) и 26Mg (11,29%). М. открыт в 1808 Г. Дэви, к-рый подверг электролизу с ртутным катодом увлажнённую магнезию (давно известное вещество); Дэви получил амальгаму, а из неё после отгонки ртути - новый порошкообразный металл, названный магнием. В 1828 франц. химик А. Бюсси восстановлением расплавленного хлорида М. парами калия получил М. в виде небольших шариков с металлич. блеском.

Распространение в природе. М.- характерный элемент мантии Земли, в ультраосновных породах его содержится 25,9% по массе. В земной коре М. меньше, средний кларк его 1,87%; преобладает М. в основных породах (4,5% ), в гранитах и др. кислых породах его меньше (0,56%). В магматич. процессах Mg2+ - аналог Fe2+, что объясняется близостью их ионных радиусов (соответственно 0,74 и 0,80 А). Mg2+ вместе с Fe2+ входит в состав оливина, пироксенов и др. магматич. минералов.

Минералы М. многочисленны - силикаты, карбонаты, сульфаты, хлориды и др. (см. Магниевые руды). Более половины из них образовались в биосфере - на дне морей, озёр, в почвах и т. д.; остальные связаны с высокотемпературными процессами.

В биосфере наблюдается энергичная миграция и дифференциация М.; здесь гл. роль 'принадлежит физ.-хим. процессам - растворению, осаждению солей, сорбции М. глинами. М. слабо задерживается в биологич. круговороте на континентах и с речным стоком поступает в океан. В морской воде в среднем 0,13% М.- меньше, чем натрия, но больше всех др. металлов. Морская вода не насыщена М. и осаждения его солей не происходит. При испарении воды в морских лагунах в осадках вместе с солями калия накапливаются сульфаты и хлориды М. В илах некоторых озёр накапливается доломит (напр., в озере Балхаш). В промышленности М. получают в основном из доломитов, а также из морской воды.

Физические и химические свойства. Компактный М.- блестящий серебристо-белый металл, тускнеющий на воздухе вследствие образования на поверхности окисной плёнки. М. кристаллизуется в гексагональной решётке, а = 3,2028А, с = 5,1998А. Атомный радиус 1,60А, ионный радиус Mg2+ 0,74А. Плотность М. 1,739 г/см3 (20 °С); tпл 651 °С; tкип 1107 °С. Уд. теплоёмкость (при 20 °С) 1,04х103 дж/(кг*К), т. е. 0,248 кал/(г*°С); теплопроводность (20 °С) 1,55-102 вт/(м*К), т. е. 0,37 кал/(см*сек*°С); термин, коэфф. линейного расширения в интервале 0-550 °С определяется из уравнения 25,0*10-6 + 0,0188 t. Удельное электрич. сопротивление (20 °С) 4,5*10-8 ом-м (4,5 мком-см). М. парамагнитен, удельная магнитная восприимчивость +0,5*10-6, М.- относительно мягкий и пластичный металл; его механич. свойства сильно зависят от способа обработки. Напр., при 20 °С свойства соответственно литого и деформированного М. характеризуются следующими величинами: твёрдость по Бринеллю 29,43*107 и 35,32*107 н/м2(30 и 36 кгс/мм2), предел текучести 2,45*107 и 8,83*107 н/м2 (2,5 и 9,0 кгс/мм2), предел прочности 11,28*107 и 19,62*107 н/м2(11,5 и 20,0 кгс/мм2), относит, удлинение 8,0 и 11,5%.

Конфигурация внешних электронов атома М. 3s2, Во всех стабильных соединениях М. двухвалентен. В хим. отношении М.- весьма активный металл. Нагревание до 300-350 °С не приводит к значительному окислению компактного М., т. к. поверхность его защищена окисной плёнкой, но при 600-650 °С М. воспламеняется и ярко горит, давая магния окись и отчасти нитрид MgsN2. Последний получается и при нагревании М. ок. 500 °С в атмосфере азота. С холодной водой, не насыщенной воздухом, М. почти не реагирует, из кипящей медленно вытесняет водород; реакция с водяным паром начинается при 400 °С. Расплавленный М. во влажной атмосфере, выделяя из Н2О водород, поглощает его; при застывании металла водород почти полностью удаляется. В атмосфере водорода М. при 400-500 °С образует MgH2.

М. вытесняет большинство металлов из водных растворов их солей; стандартный электродный потенциал Mg при 25 °С - 2,38 в. С разбавленными минеральными кислотами М. взаимодействует на холоду, но в плавиковой к-те не растворяется вследствие образования защитной плёнки из нерастворимого фторида MgF2. В концентрированной H2SО4 и смеси её с НМО3 М. практически нерастворим. С водными растворами щелочей на холоду М. не взаимодействует, но растворяется в растворах гидрокарбонатов щелочных металлов и солей аммония. Едкие щёлочи осаждают из растворов солей М. гидроокись Mg(OH)2, растворимость к-рой в воде ничтожна. Большинство солей М. хорошо растворимо в воде, напр, магния сульфат, мало растворимы MgF2, MgCО3 (см. Магния карбонат), Mg3(PO4)2 и некоторые двойные соли.

При нагревании М. реагирует с галогенами, давая галогениды; с влажным хлором уже на холоду образуется MgCl2. При нагревании М. до 500-600 °С с серой или с SO2 и H2S может быть получен сульфид MgS, с углеводородами - карбиды MgC2 и Mg2C3. Известны также силициды Mg2Si, Mg3Si2, фосфид Mg3P2 и др. бинарные соединения. М.- сильный восстановитель; при нагревании вытесняет др. металлы (Be, A1, щелочные) и неметаллы (В, Si, С) из их окислов и галогенидов. М. образует многочисленные металлоорганич. соединения, определяющие его большую роль в органич. синтезе (см. Магнийорганические соединения). М. сплавляется с большинством металлов и является основой многих технически важных лёгких сплавов.

Получение и применение. В пром-сти наибольшее количество М. получают электролизом безводного хлорида MgCl2 или обезвоженного карналлита KCl-MgCl2-6H2O (см. Магния хлорид). В состав электролита входят также хлориды Na, К, Са и небольшое количество NaF или CaF2. Содержание MgCl2 в расплаве - не менее 5-7%; по мере хода электролиза, протекающего при 720-750 °С, проводят корректировку состава ванны, удаляя часть электролита и добавляя MgCl2 или карналлит. Катоды изготовляют из стали, аноды - из графита. Расплавленный М., всплывающий на поверхность электролита, периодически извлекается из катодного пространства, отделённого от анодного перегородкой, не доходящей до дна ванны. В состав чернового М. входят до 2% примесей; его рафинируют в тигельных электрич. печах под слоем флюсов и разливают в изложницы. Лучшие сорта первичного М. содержат 99,8% Mg. Последующая очистка М. проводится сублимацией в вакууме: 2-3 сублимации повышают чистоту М. до 99,999%. Анодный хлор после очистки используется для получения безводного MgCl2 из магнезита, тетрахлорида титана TiCU из двухокиси ТiO2 и др. соединений.

Другие способы получения М.- метал лотермический и углетермический. По первому брикеты из прокалённого до полного разложения доломита и восстановителя (ферросилиция или силикоалюминия) нагревают при 1280-1300°С в вакууме (остаточное давление 130- 260 н/м2, т.е. 1-2 ммрт.ст.). Пары М. конденсируют при 400-500 °С. Для очистки его переплавляют под флюсом или в вакууме, после чего разливают в изложницы. По углетермич. способу брикеты из смеси угля с окисью М. нагревают в электропечах выше 2100 °С; пары М. отгоняют и конденсируют.

Важнейшая область применения ме-таллич. М.- произ-во сплавов на его основе (см. Магниевые сплавы). Широко применяют М. в металлотермич. процессах получения трудновосстанавливаемых и редких металлов (Ti, Zr, Hf, U и др.), используют М. для раскисления и де-сульфурации металлов и сплавов. Смеси порошка М. с окислителями служат как осветительные и зажигат. составы. Широкое применение находят соединения М.

Лит.: Стрелец X. Л., Тайц А. Ю., Гуляницкий Б. С., Металлургия магния, 2 изд., М., 1960; Ulbmann Encyklo-padie der technischen Chemie, 3 Aufl., Bd 12, Munch.- В., 1960. В.Е.Плющев.

Магний в организме. М.- постоянная часть растит, и животных организмов (в тысячных - сотых долях процента). Концентраторами М. являются нек-рые водоросли, накапливающие до 3% М. (в золе), нек-рые фораминиферы - до 3,5%, известковые губки - до 4% . М. входит в состав зелёного пигмента растений - хлорофилла (в общей массе хлорофилла растений Земли содержится ок. 100 млрд. т М.), а также обнаружен во всех клеточных органеллах растений и рибосомах всех живых организмов. М. активирует мн. ферменты, вместе с кальцием и марганцем обеспечивает стабильность структуры хромосом и коллоидных систем в растениях, участвует в поддержании тургорного давления в клетках. М. стимулирует поступление фосфора из почвы и его усвоение растениями, в виде соли фосфорной к-ты входит в состав фитина. Недостаток М. в почвах вызывает у растений мраморность листа, хлороз растений (в