БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481подобных случаях используют магниевые удобрения). Животные и человек получают М. с пищей. Суточная потребность человека в М.-0,3-0,5 г; в детском возрасте, а также при беременности и лактации эта потребность выше. Нормальное содержание М. в крови - примерно 4,3 мг%; при повышенном содержании наблюдаются сокливость, потеря чувствительности, иногда паралич скелетных мышц. В организме М. накапливается в печени, затем значит. его часть переходит в кости и мышцы. В мышцах М. участвует в активировании процессов анаэробного обмена углеводов. Антагонистом М. в организме является кальций. Нарушение магниево-кальциевого равновесия наблюдается при рахите, когда М. из крови переходит в кости, вытесняя из них кальций. Недостаток в пище солей М. нарушает нормальную возбудимость нервной системы, сокращение мышц. Крупный рог. скот при недостатке М. в кормах заболевает т. н. травяной тетанией (мышечные подёргивания, остановка роста конечностей). Обмен М. у животных регулируется гормоном паращитовидных желез, понижающим содержание М. в крови, и проланом, повышающим содержание М. Из препаратов М. в мед. практике применяют: сульфат М. (как успокаивающее, противосудорожное, спазмолитич., слабительное и желчегонное средство), магнезию жжёную (магния окись) и карбонат М. (как щёлочи, лёгкое слабительное). Г. Я. Жизневская.

МАГНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, соединения, содержащие связь углерод - магний. Известны два типа М. с.: полные - магнийдиалкилы или магнийдиарилы R2Mg и смешанные - алкил- или арилмагнийгалогениды RMgX (X = С1, Вг, I). Полные М. с.- кристаллич. вещества, весьма чувствительные к воздействию кислорода, влаги и углекислого газа (самовоспламеняются). Они были получены в сер. 19 в. при взаимодействии ртутьорганич. соединений R2Hg с магнием; применения в органич. синтезе не нашли.

В 1900 франц. химик Гриньяр разработал простой метод получения смешанных М. с. и показал широкие возможности использования этих соединений в органич. синтезе. Он установил, что металлич. магний в абсолютном (безводном) эфире реагирует с алкил- или арилгалогенидами RX с образованием соединений, переходящих в эфирный раствор. Эти соединения, наз. реактивами Гриньяра, в свободном виде крайне нестойки. Поэтому их не выделяют, а используют в виде растворов, к-рые устойчивы в отсутствие влаги и кислорода воздуха.

Впоследствии были разработаны методы получения реактивов Гриньяра в углеводородных средах (напр., в бензоле, ксилоле, толуоле) и в отсутствие растворителя, благодаря чему появилась возможность использования М. с. в производств, условиях. Однако наибольшее распространение получил способ синтеза RMgX с применением растворителей эфирного характера. С возрастанием сольватирующих свойств растворителя образование реактивов Гриньяра облегчается. Так, винилгалогениды СН2 = СНХ не реагируют с магнием в эфире, однако образуют М- с. в тетрагидрофуране (А. Норман). Ацетиленилмагнийгалогениды могут быть получены взаимодействием алкилмагнийгалогенидов с производными ацетилена (Ж. И. Иоцич):
[1512-3.jpg]

М. с. широко применяют для получения различных классов органич. соединений (см. Гриньяра реакция). В пром-сти при помощи М. с. осуществляют синтезы нек-рых кремнийорганич. соединений, душистых и лекарств, веществ.

Лит.: Иоффе ф. Т., Несмеянов А. Н., Магний, берилий, кальций, стронции, барий, в сб.: Методы элементоор-ганической химии, под ред. А. Н. Несмеянова, К. А. Кочешкова, [ч. 1], М., 1963. Б. Л. Дяткин.

МАГНИКО, магнитно-твёрдый материал на основе железа, содержащий 24% Со, 14% №, 8% А1, 3% Си. Основные тех-нологич. данные производства М. в СССР разработаны в 40-х гг. сов. учёным А. С. Займовским. М. относится к типу дисперсионно-твердеющих магнитных материалов. Анизотропность магнитных свойств М. достигается термической обработкой в магнитном поле. Послужил основой для создания целой серии магнитно-твёрдых материалов типа М. Магнитные характеристики М. приведены в ст. Магнитно-твёрдые материалы.

МАГНИТ ПОСТОЯННЫЙ [греч. magnetis, от Magnetis Hthos, букв.- камень из Магнесии (древний город в Малой Азии)], изделие определённой формы (в виде подковы, полосы и др.) из предварительно намагниченных ферромагнитных или ферримагнитных материалов, способных сохранять большую магнитную индукцию после устранения намагничивающего поля (т. н. магнитно-твёрдых материалов). М. п. широко применяются как автономные источники постоянного магнитного поля в электротехнике, радиотехнике, автоматике.

Основные физ. свойства М. п. определяются характером размагничивающей ветви петли магнитного гистерезиса материала, из к-рого М. п. изготовлен. Чем больше коэрцитивная сила Нс и остаточная магнитная индукция В, материала (рис.), т. е. чем более магнитно-твёрдым является материал, тем лучше он подходит для М. п. Индукция в М. п. может равняться наибольшей остаточной индукции В, лишь в том случае, если он представляет собой замкнутый магнитопровод. Обычно же М, п. служит для создания магнитного потока в воздушном зазоре, напр, между полюсами подковообразного магнита. Воздушный зазор уменьшает индукцию (и намагниченность) М. п.; влияние зазора подобно действию нек-рого внешнего размагничивающего поля На. Значение поля На, уменьшающего остаточную индукцию В, до значения Bd (см. рис.), определяется конфигурацией М. п. (см. Размагничивающий фактор). Т. о., при помощи М. п. могут быть созданы магнитные поля, индукция к-рых В<=Вr. Действие М. п. наиболее эффективно в том случае, если состояние магнита соответствует точке кривой размагничивания, где максимально значение (BH)max, т. е. максимальна магнитная энергия единицы объёма материала. К числу материалов, из к-рых изготовляют М. п., относятся сплавы на основе Fe, Co, Ni, A1 (см. Ални сплавы), гексагональные ферриты и др, К новейшим, наиболее эффективным материалам для М. п. относятся ферримагнитные интерметаллич. соединения редкоземельных металлов Sm и Nd с Со (типа SmCos). Эти соединения обладают рекордно высокой величиной (ВH)тах (см. табл.).

Кривые размагничивания (а) и магнитной анергии (б) ферромагнетика. Вr - остаточная магнитная индукция; Нc - коэрцитивная сила; На- размагничиваю" щее поле; Вd - индукция в поле Нd.

Основные характеристики материалов для постоянных магнитов (данные усреднены)

Материал

Нс, э

Вr, гс

(BH)max 106 гс*э

Дата первого применения
Углеродистая сталь

50

10000

0,26

1880
Кобальтовая сталь

240

9200

0,9

1917
Сплав Fe - Ni - Al

480

6100

1 ,05

1933
Бариевый гексагональный феррит

1800

2000

0,9

1952
Сплав Pt - Co

4300

6500

9,5

1958
Соединение SmCo5

9500

9000

20,0

1968

Важным условием для достижения наивысших магнитных характеристик М. п. является его предварительное намагничивание до состояния магнитного насыщения. Др. важное требование - неизменность магнитных свойств со временем, отсутствие магнитного старения. М. п, изготовленные из материалов, склонных к магнитному старению, подвергают спец. обработкам (термической, переменным магнитным полем и др.), стабилизирующим состояние магнитов (см. Старение магнитное).

Лит.: Займовский А. С., Чудневская Л. А., Магнитные материалы, [3 изд.], М.- Л., 1957; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Смит Я., Вейн X., ферриты, пер. с англ., М., 1962; Постоянные магниты. Справочник, пер. с англ., М.- Л., 1963; Р а б к и н Л. И., С о с к и н С. А., Э п ш г е и н Б. Ш., Ферриты, Л., 1968; Б е л о в К. П., Редкоземельные магнитные материалы, "Успехи физических наук", 1972, 1. 106, в. 2. К. П. Белое.

МАГНИТ СВЕРХПРОВОДИЩИЙ, соленоид или электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости обладает нулевым омич. сопротивлением. Если такая обмотка замкнута накоротко, то наведённый в ней электрич. ток сохраняется практически сколь угодно долго. Магнитное поле незатухающего тока, циркулирующего по обмотке М. с., исключительно стабильно и лишено пульсаций, что важно для ряда приложений в науч. исследованиях и технике.

Обмотка М. с. теряет свойство сверхпроводимости при повышении темп-ры выше критической температуры Тк сверхпроводника, при достижении в обмотке критического тока Iк или критического магнитного поля Нк. Учитывая это, для обмоток М. с. применяют материалы с высокими значениями Тк, lК и Нк (см. табл.).

Для стабилизации тока в обмотке М. с. (предотвращения потери сверхпроводимости отдельными её участками) сверх-проводящие обмоточные материалы выпускаются в виде проводов и шин, состоящих из тонких жил сверхпроводника в матрице нормального металла с высокой электро- и теплопроводностью (медь или алюминий). Жилы делают не толще неск. десятков мкм, что снижает тепловыделение в обмотке при проникновении в неё растущего с током магнитного поля. Кроме того, весь проводник при изготовлении скручивают вдоль оси (рис. 1), что способствует уменьшению токов, наводящихся в сверхпроводящих жилах и замыкающихся через металл матрицы. Обмоточные материалы из хрупких интерметаллич. соединений Nb3Sn и V3Gа выпускают в виде лент из Nb или V толщиной 10-20 мкм со слоями интерметаллида (2-3 мкм) на обеих поверхностях. Такая лента для стабилизации сверхпроводящего тока и упрочнения покрывается тонким слоем меди или нержавеющей стали.


Рис. 1. Схематическое изображение многожильного сверхпроводящего провода: а - комбинированный скрученный проводник (1 - сверхпроводящие нити, 2- матрица); 6 - поперечное сечение многожильного комбинированного проводника с 61 нитью (слева) и 1045 нитями (справа) в медной матрице.

Свойствасверхпроводящих материалов, применяемых для обмоток сверхпроводящих магнитов



Материал

Нкпри 4,2 К,

КЗ

Критическая темп-ра

тк, к

Критическая плотность тока (а/см2) в магнитном поле


50 кгс

100 кгс

150 кгс

200 кгс


Сплав ниобий - цирконий (Nb 50%-Zr 50%) ....

90

10,5

1*105

0

0

0


Сплав ниобий - титан (Nb 50%-Ti 50%) .......

120

9,8

3*105

1*104

0

0


Соединение ниобий - олово (NbзSn) ...........

245

18,1

(1,5-2)*106

1*106

(0,7-1)*105

(3-5)*104


Соединение ванадий - галлий
210

14,5

1*106

(2-3)* 105

(1,5-2)*105

(3-5)*104

1 э= 79,6 а/м

Сравнительно небольшие М. с. (с энергией магнитного поля до неск. сотен кдж) изготавливают с плотно намотанной обмоткой, содержащей 30-50% сверхпроводника в сечении провода. У крупных М. с., с энергией поля в десятки и сотни Мдж, проводники (шины) в своём сечении содержат 5-10% сверхпроводника, а в обмотке предусматриваются каналы, обеспечивающие надёжное охлаждение витков жидким гелием.

Рис. 2. Основные элементы конструкции сверхпроводящего магнита: 1 - контакт для присоединения к внешним цепям; 2 - многожильный сверх-проводящий провод в изоляционном покрытии, припаянный к контакту; 3 - рабочий объём соленоида, максимальная напряжённость поля создаётся в его центре; 4 - текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 - металлический каркас соленоида; 6 - сверхпроводящая обмотка; 7 - силовой бандаж обмотки; 8 - изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани.

Электромагнитное взаимодействие витков соленоида создаёт механич. напряжения в обмотке, к-рые в случае длинного соленоида с полем ~ 100 кгс эквивалентны внутр. давл