БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я


FeS

1074
Октан C8H18

-96,63

UF6

43
Нафталин С10Н8

-91,8







* Данные приведены для СГС системы единиц.

М. в. достигает особенно больших значений в ферромагнетиках (от неск десятков до многих тыс единиц), причём она очень сильно и сложным образом зависит от Н. Поэтому для ферромагнетиков вводят дифференциальную М. в. nд = dJ/dH. При H = О (см. рис.) М.в, ферромагнетиков не равна нулю, а имеет значение nа, наз. начальной М.в. С увеличением Н М. в. растёт, достигает максимума (Имакс) и затем вновь уменьшается. В области очень высоких значений Н М, в. ферромагнетиков (при темп-рах, не очень близких к точке Кюри) становится столь же незначительной, как и в обычных парамагнетиках (область парапроцесса). Вид кривой n(Н) (кривая Столетова) обусловлен сложным механизмом намагничивания ферромагнетиков. Типичные значения nа и nмакc: Fe ~ 1100 и ~ 22 000, Ni ~ 12 и ~ 80, сплав пермаллой ~ 800 и ~ 8000 (в нормальных условиях).

Кривая зависимости дифференциальной магнитной восприимчивости Ид ферромагнетиков от напряжённости намагничивающего поля Н.

М. в., как правило, зависит от темп-ры (исключение составляют большинство диамагнетиков и нек-рые парамагнетики - щелочные и, отчасти, щёлочноземельные металлы). М. в. парамагнетиков уменьшается с темп-рой, следуя Кюри закону или Кюри - Вейса закону. В ферромагнитных телах М. в. с ростом температуры увеличивается, достигая резкого максимума вблизи точки Кюри. М в. антиферромагнетиков увеличивается с ростом темп-ры до точки Нееля, а затем падает по закону Кюри - Вейса (см. Кюри точка).

Лит.: Вонсовский С. В., Магнетизм, М., 1971; Бозорт Р., ферромагнетизм, пер. с англ., М., 1956; Tables de constantes et donnees numeriques, 7. Constantes selectionnees. Diamagnetisme et paramagnetisme, par G. Foex, P., 1957. С. В. Вонсовский.

МАГНИТНАЯ ВЯЗКОСТЬ, 1) в ферромагнетизме (наз также магнитным последействием)- отставание во времени изменения магнитных характеристик (намагниченности, проницаемости и т. д.) ферромагнетиков от изменений напряжённости внешнего магнитного поля. Вследствие М. в. намагниченность образца устанавливается после изменения напряжённости поля через время от 10-9 сек до десятков минут и даже часов (см. также Релаксация магнитная). При намагничивании ферромагнетиков в переменном поле наряду с потерями электромагнитной энергии на вихревые токи и гистерезис возникают потери на М. в., к-рые в полях высокой частоты достигают значительной величины. М. в. в проводниках часто маскируется действием вихревых токов, "вытесняющих" магнитный поток из ферромагнетиков. С целью уменьшения влияния вихревых токов при экспериментальном исследовании М. в. образцы материалов берутся в виде тонких проволок (рис.).

Экспериментальная кривая (а) спада намагниченности (в условных единицах) проволоки диаметром 0,5 мм из сплава Fe - Ni и вычисленная кривая (б) спада намагниченности того же образца при наличии только вихревых токов. Различие кривых а и б объясняется влиянием М. в.

В зависимости от структуры ферромагнетика, условий его намагничивания, температуры, М. в. может вызываться различными причинами. При апериодич. изменении напряжённости поля в интервале значений, близких к коэрцитивной силе, где изменение намагниченности обычно осуществляется необратимым смещением границ между доменами (см. Намагничивание), вязкостный эффект в проводниках вызывается в основном вихревыми микротоками (1-й тип М. в.). Эти токи возникают при изменениях поля, связанных с перемагничиванием доменов. Время установления магнитного состояния в этом случае пропорционально дифференциальной магнитной восприимчивости и для чистых ферромагнитных металлов (Fe, Co, Ni) обратно пропорционально абс темп-ре. Др. тип М. в. обусловлен примесями, снижающими свободную энергию междоменных границ. Перемещающиеся вследствие изменения поля доменные границы задерживаются в местах концентрации атомов примеси, и процесс намагничивания прекращается. Со временем, после диффузии атомов примеси в др. места, границы получают возможность двигаться дальше, намагничивание продолжается (2-й тип М. в.).

В высококоэрцитивных сплавах и нек-рых др. ферромагнетиках наблюдается т. н. сверхвязкость, для к-рой время магнитной релаксации составляет неск. минут и более (3-й тип М. в.). Этот тип М.в. связан с флуктуациями энергии, преимущественно тепловыми. Флуктуации вызывают перемагничивание доменов, к-рые при изменении поля получили недостаточно энергии, чтобы сразу перемагнититься. Диффузионные и флуктуационные процессы существенно зависят от темп-ры, поэтому М.в. 2-го и 3-го типов характеризуется сильной температурной зависимостью: с понижением темп-ры М. в. возрастает. Четвёртый тип М. в., характерный гл. обр. для ферритов, обусловлен диффузией электронов между ионами 2-валентного и 3-валентного железа. Этот процесс эквивалентен диффузии самих ионов, но осуществляется значительно легче, поэтому М. в. ферритов обычно невелика. В сильных магнитных полях действие М, в. незначительно. Часто в ферромагнетиках одновременно проявляются неск. типов М. в., что затрудняет анализ явления. Важный вклад в исследование М. в. внесли советские физики В. К. Аркадьев, Б. А. Введенский и др., из зарубежных учёных - Л. Неель, голландский физик Я. Снук и др.

Лит.: Вонсовский С. В., Магнетизм, М., 1971; Kronmuller H., Nachwirkung in Ferromagnetika, В., 1968. Р. В. Телеснин.

2) В магнитной гидродинамике - величина, характеризующая свойства электропроводящих жидкостей и газов при их движении в магнитном поле. В аос. системе единиц Гаусса (см. СГС система единиц) М.в. vm = c2/4na, где с-скорость света в вакууме, о-электрическая проводимость среды.

Лит. см. при ст. Магнитная гидродинамика.

МАГНИТНАЯ ГИДРОДИНАМИКА (МГД), наука о движении электропроводящих жидкостей и газов в присутствии магнитного поля; раздел физики, развившийся "на стыке" гидродинамики и классической электродинамики. Характерными для М. г. объектами являются плазма (настолько, что М. г. иногда рассматривают как раздел физики плазмы), жидкие металлы и элек трол ит ы.

Первые исследования по М. г. восходят ко временам М. Фарадея, но как самостоятельная отрасль знания М. г. стала развиваться в 20 в. в связи с потребностями астрофизики и геофизики. Было установлено, что мн. космич. объекты обладают магнитными полями. Так, в атмосферах звёзд наблюдаются поля напряжённостью ~ 10 000 э (на Солнце до 5000 э), а в открытых в 1969 пульсарах, по совр. представлениям, напряжённости полей достигают 1012 э. Динамич. поведение находящейся в подобных полях плазмы радикально изменяется, т. к. плотность энергии магнитного поля становится сравнимой с плотностью кинетич. энергии частиц плазмы (или превышает её). Этот же критерий справедлив и для слабых космич. магнитных полей напряжённостью 10-3 - 10-5 э (в межзвёздном пространстве, поле Земли в верхней атмосфере и за её пределами), если в областях, занимаемых ими, концентрация заряж. частиц низка. Т. о., возникла необходимость в создании спец. теории движения космической плазмы в магнитных полях, получившей название космической электродинамики, а в случае, когда плазму можно рассматривать как сплошную среду - космической магнитогидродинамики (космич. МГД).

Осн. положения М. г. были сформулированы в 1940-х гг. X. Альфвеном, к-рый в 1970 за создание М. г. был удостоен Нобелевской пр. по физике. Им было теоретически предсказано существование специфич. волновых движений проводящей среды в магнитном поле, получивших назв. волн Альфвена. Начав формироваться как наука о поведении космич. плазмы, М. г. вскоре распространила свои методы и на проводящие среды в земных условиях (гл. обр. создаваемые в научных исследованиях и в производств, деятельности). В нач. 1950-х гг. развитию М. г., как и физики плазмы в целом, дали мощный импульс нац. программы (СССР, США, Великобритания) исследований по проблеме управляемого термоядерного синтеза. Появились и быстро совершенствуются многочисл. технич. применения М. г. (МГД-насосы, генераторы, сепараторы, ускорители, перспективные для космич. полётов плазменные двигатели и пр.).

В основе М. г. лежат две группы законов физики: ур-ния гидродинамики и ур-ния электромагнитного поля (Максвелла уравнения). Первые описывают течения проводящей среды (жидкости или газа); однако, в отличие от обычной гидродинамики, эти течения связаны с распределёнными по объёму среды электрическими токами. Присутствие магнитного поля приводит к появлению в ур-ниях дополнит, члена, соответствующего действующей на эти токи распределённой по объёму электродинамич. силе (см. Ампера закон, Лоренца сила). Сами же токи в среде и вызываемые ими искажения магнитного поля определяются второй группой ур-ний. Т. о., в М. г. ур-ния гидродинамики и электродинамики оказываются существенно взаимосвязанными. Следует отметить, что в М. г. в ур-ниях Максвелла почти всегда можно пренебречь токами смещения (нерелятивистская М. г.).

В общем случае ур-ния М. г. нелинейны и весьма сложны для решения, но в практич. задачах часто можно ограничиться теми или иными предельными режимами, при оценке к-рых важным параметром служит безразмерная величина, наз. магнитным Рейнолъдса числом:
[1512-7.jpg]

(L - характерный для течения среды размер, V - характерная скорость течения, Vm= с2/4Пи*б - т. н. магнитная вязкость, описывающая диссипацию энергии магнитного поля, а - электрич. проводимость среды, с - скорость света в вакууме; здесь и ниже используется абс. система единиц Гаусса, см. СГС система единиц).

При Rm << 1 (что обычно для лабораторных условий и технич. применений) течение проводящей среды слабо искажает магнитное поле, к-рое поэтому можно считать заданным внешними источниками. Такое течение может быть использовано, напр., для генерации электрич. тока - энергия гидродинамич. движения среды превращается в энергию тока во внешней цепи (см. Магнитогидродинамический генератор). Напротив, если ток в среде поддерживается внешней эдс, то наличие внешнего магнитного поля вызывает появление упомянутой выше объёмной электродинамич. силы, к-рая создаёт в среде перепад давления и приводит её в движение. Этот эффект используется в МГД-насосах (напр., для перекачивания расплавленного металла) и плазменных ускорителях. Объёмная электродинамич. сила даёт также возможность создавать регулируемую выталкивающую (архимедову) силу, к-рая действует на помещённые в проводящую жидкость тела. На этом важном эффекте основано действие МГД-сепараторов. Таковы осн. технич. применения М. г. Кроме того, в М. г. находят естеств. обобщение известные задачи обычных гидродинамики и газовой динамики: обтекание тел, пограничный слой и др.; в ряде случаев (напр., при полётах в ионосфере космич. аппаратов, в каналах, по к-рым текут проводящие среды) оказывается возможным с помощью магнитного поля существенно влиять на свойства соответствующих течений.

Однако наиболее интересные и разнообразные эффекты характерны для др. лредельного класса сред, рассматриваемых в М. г.,- для сред с Дт" 1, т. е. с высокой проводимостью и (или) большими размерами. Эти условия, как правило, выполняются в средах, изучаемых в гео- и астрофизич. приложениях М. г., а также в горячей (напр., термоядерной) плазме. Течения в таких средах чрезвычайно сильно влияют на магнитное поле в них. Одним из важнейших эффектов в этих условиях является вмороженность магнитного поля. В хорошо (строго говоря - идеально) проводящей среде индукция электромагнитная вызывает появление токов, препятствующих какому бы то ни было изменению магнитного потока через всякий материальный контур. В движущейся МГД-среде с Rm " 1 это справедливо для любого контура, образуемого её частицами. В результате магнитный поток через любой движущийся и меняющий свои размеры элемент среды остаётся неизменным (с тем большей степенью точности, чем больше величина Rm), и в этом смысле говорят о "вмороженности" магнитного поля. Это во многих случаях позволяет, не прибегая к громоздким расчётам, с помощью простых представлений получить качественную картину течений среды и деформаций ма