БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481гнитного поля - следует только рассматривать магнитные силовые линии как упругие нити, на которые нанизаны частицы среды. Более строгое рассмотрение этого "упругого" действия магнитного поля на проводящую среду показывает, что оно сводится к изотропному (т. е. одинаковому по всем направлениям) "магнитному" давлению рм = В2/8Пи, которое добавляется к обычному газодинамическому давлению среды р, и магнитному натяжению Т = В2/4Пи направленному вдоль силовых линий поля (магнитная проницаемость всех представляющих интерес для М. г. сред с большой точностью равна 1, и можно с равным правом пользоваться как магнитной индукцией В, так и напряжённостью Н).

Наличие дополнит, "упругих" натяжений в МГД-средах приводит к специфическому колебательному (волновому) процессу - волнам Альфвена. Они обусловлены магнитным натяжением Т и распространяются вдоль силовых линий (подобно волнам, бегущим вдоль упругой нити) со скоростью
[1512-8.jpg]

где р - плотность среды. Волны Альфвена описываются точным решением нелинейных ур-ний М. г. для несжимаемой среды. Ввиду сложности этих ур-ний таких точных решений для больших Rmполучено очень немного. Ещё одно из них описывает течение несжимаемой (р = const) жидкости с той же альф-веновской скоростью (2) вдоль произвольного магнитного поля. Известно точное решение и для т. н. МГД-разрывов, к-рые включают контактные, тангенциальные и вращательные разрывы, а также быструю и медленную ударные волны. В контактном разрыве магнитное поле пересекает границу раздела двух различных сред, препятствуя их относительному движению (в приграничном слое среды неподвижны одна относительно другой). В тангенциальном разрыве поле не пересекает границу раздела двух сред (его составляющая, нормальная к границе, равна нулю), и эти среды могут находиться в относит, движении. Частным случаем тангенциального разрыва является нейтральный токовый слой, разделяющий равные по величине и противоположно направленные магнитные поля. В М. г. доказывается, что при нек-рых условиях магнитное поле стабилизирует тангенциальный разрыв скорости, к-рый абсолютно неустойчив в обычной гидродинамике. Специфическим для М. г. (не имеющим аналога в гидродинамике непроводящих сред) является вращательный разрыв, в к-ром вектор магнитной индукции, не изменяясь по абс. величине, поворачивается вокруг нормали к поверхности разрыва. Магнитные натяжения в этом случае приводят среду в движение таким образом, что вращательный разрыв распространяется по направлению нормали к поверхности с альфвеновской скоростью (2), если под В в (2) понимать нормальную составляющую индукции. Быстрые и медленные ударные волны в М. г. отличаются от обычных ударных волн тем, что частицы среды после прохождения фронта волны получают касательный к фронту импульс за счёт магнитных натяжений (ведь магнитные силовые линии можно рассматривать как упругие нити, см. выше). В быстрой ударной волне магнитное поле за её фронтом усиливается, скачок магнитного давления на фронте действует в ту же сторону, что и скачок газодинамич, давления, и поэтому скорость такой волны больше скорости звука в среде. В медленной ударной волне, напротив, поле после её прохождения ослабевает, перепады газо-дйнамич. и магнитного давления на фронте волны направлены противоположно; скорость медленной волны меньше скорости звука. Число теоретически мыслимых необратимых ударных волн в М. г. оказывается значительно больше, чем реально существующих. Отбор решений, соответствующих действительности, производится с помощью т. н. условия эволюционности, следующего из рассмотрения устойчивости ударных волн при их взаимодействии с колебаниями малой амплитуды.

Известные точные решения, однако, далеко не исчерпывают содержания теоре-тич. М. г. сред с Rм"1. Широкий класс задач удаётся исследовать приближённо. При таком исследовании возможны два основных подхода: приближение слабого поля, когда магнитные давление и натяжение малы по сравнению с остальными динамическими факторами (газодинамическим давлением и инерциальными силами), и приближение сильного поля, когда
[1512-9.jpg]

здесь v - скорость среды, р - ее газодинамич. давление.

В приближении слабого поля течение среды определяется обычными газодинамич. факторами (влиянием магнитных натяжений пренебрегают). При этом требуется рассчитать изменения поля в среде, движущейся по заданному закону. К этому классу задач относится очень важная проблема гидро магнитного динамо и проблема МГД-турбулентности. Первая состоит в отыскании ламинарных течений проводящих сред, к-рые могут создавать, усиливать и поддерживать магнитное поле. Задача о гидромагнитном динамо является основой теории земного магнетизма и магнетизма Солнца и звёзд. Существуют простые кинематич. модели, показывающие, что гидромагнитное динамо в принципе может быть осуществлено при спец. выборе распределений скоростей среды. Однако строгого доказательства, что такие распределения реализуются в действительности, пока нет.

Основным в проблеме МГД-турбулент-ности является выяснение поведения слабого исходного ("затравочного") магнитного поля в турбулентной проводящей среде (см. Турбулентность). Имеется доказательство роста среднего квадрата напряжённости случайно возникшего слабого начального поля, т. е. возрастания магнитной энергии в начальной стадии процесса. Однако остаётся открытой проблема установившегося турбулентного состояния, связанная с происхождением магнитных полей в космич. пространстве, в частности в нашей и др. галактиках.

Приближение сильного поля, в к-ром определяющими являются магнитные натяжения, применяют при изучении разреженных атмосфер космич. магнитных тел, напр. Солнца и Земли. Есть основания полагать, что именно это приближение окажется полезным для исследования процессов в удалённых астрофизич. объектах - сверхновых звёздах, пульсарах, квазарах и пр. В условиях, отвечающих (3), изменения магнитного поля вблизи его источников (появление активных областей и пятен на Солнце, смещение магнитопаузы в магнитном поле Земли под действием солнечного ветра и т. д.) переносятся с альфвеновской скоростью (2) вдоль поля, вызывая соответствующие перемещения плазмы. В результате действия магнитных сил возникают такие характерные образования, как выбросы и протуберанцы, шлемовидные структуры и стримеры на Солнце, магнитный хвост Земли (см. Солнце; Солнечная активность; Земля, раздел Магнитосфера).

Особенно интересные явления имеют место в окрестностях тех точек сильного поля, в к-ром оно обращается в нуль. В таких областях образуются тонкие токовые слои, разделяющие магнитные поля противоположного направления (т. н. нейтральные слои). В этих слоях происходит процесс "аннигиляции" магнитной энергии, т. е. её высвобождение и превращение в др. формы. В частности, в них возникают сильные электрич. поля, ускоряющие заряж.частицы. Аннигиляция магнитного поля в нейтральных токовых слоях ответственна за появление хромосферных вспышек на Солнце и суббурь в земной магнитосфере (см. Магнитные бури). Вероятно, с ней связаны и мн. др. резко нестационарные процессы во Вселенной, сопровождающиеся генерацией ускоренных заряж. частиц и жёстких излучений. С точки зрения М. г. нейтральные слои представляют собой разрывы непрерывности магнитного поля (подобно ударным волнам и тангенциальным разрывам). Однако процессы в токовых слоях и прежде всего неустойчивости, приводящие к появлению сильных ускоряющих электрич. полей, выходят за рамки М. г. и относятся к тонким и ещё не вполне разработанным вопросам физики плазмы.

Лит.: А п ь ф в е н Г., фельтхаммар К.- Г., Космическая электродинамика, пер. с англ., 2 изд., М., 1967; Сыроватский С. И., Магнитная гидродинамика, "Успехи физических наук", 1957, т. 62, в. 3; Куликовский А. Г., Любимов Г. А., Магнитная гидродинамика, М.. 1962; Шерклиф Дж., Курс магнитной гидродинамики, пер. с англ., М., 1967; Половин Р. В., Ударные волны в магнитной гидродинамике, "Успехи физических наук", 1960, т. 72, в. 1; Брагинский С. И., Явления переноса в плазме, в сб.: Вопросы теории плазмы, вып. 1, М., 1963; П и к е л ь н е р С. Б., Основы космической электродинамики, М., 1966; Данжи Д ж., Космическая электродинамика, пер. с англ., М., 1961; Андерсон Э., Ударные волны в магнитной гидродинамике, пер. с англ., М., 1968; Ландау Л. Д., Л и ф ш и ц Е. М., Электродинамика сплошных сред, М., 1959 (Теоретическая физика). С. И, Сыроватский.



МАГНИТНАЯ ГОЛОВКА, узел устройства для магнитной записи (стирания) информации или её воспроизведения. Осн. элементы М. г.- сердечник (магнитопровод) для концентрации магнитного потока и одна или неск. обмоток для подвода или снятия электрич. сигналов. Сердечники М. г. изготовляют из железоникелевых сплавов 79НМ, 79НМ-У и 80НХС, сплавов алюминия Ю-16 и Ю-16М (алфенол), из ферритов и пермаллоя. Со стороны, обращённой к носителю записи, сердечник имеет рабочий зазор - промежуток, заполняемый немагнитным материалом (напр., фольгой из бериллиевой бронзы), обеспечивающий магнитную связь М. г. с носителем записи. В зависимости от положения рабочего зазора относительно носителя можно получить магнитную запись с продольным, поперечным и перпендикулярным намагничиванием. Сердечник М. г. может соприкасаться с носителем (контактная запись) или быть отделён от него воздушным промежутком (бесконтактная запись). На рис. схематично изображена- М. г. для наиболее употребительной контактной записи с продольным намагничиванием. В режиме записи электрич. сигналы, подаваемые в обмотку 5, наводят в сердечнике 1 магнитный поток, к-рый, пронизывая участок магнитной поверхности движущегося носителя записи 3 вблизи рабочего зазора 4, изменяет остаточную намагниченность этого участка в соответствии с записываемым сигналом. В режиме воспроизведения полезная эдс (сигнал) возникает в результате электромагнитной индукции, обусловленной относительным взаимным перемещением М. г. и носителя записи.

Схема магнитной индукционной головки: 1 - магнитопровод; 2 - дополнительный зазор; 3 - носитель записи; 4 - рабочий зазор; 5 - обмотка.


Существуют М. г., чувствительные к изменению полезного магнитного потока, эдс к-рых не зависит от скорости относит, перемещения головки вдоль дорожки записи; полупроводниковые М. г., использующие эффект Холла; М. г., действие к-рых основано на периодич. изменении магнитного сопротивления сердечника или рабочего зазора; М. г., основанные на взаимодействии магнитного поля сигналограммы с электронным лучом, и др. М. г. широко применяют в устройствах магнитной записи и воспроизведения информации (диктофонах, магнитофонах, видеомагнитофонах, запоминающих устройствах, регистраторах измерит, информации и т. п.).

Лит.: Ефимов Е. Г., Магнитные головки, М., 1967; К а г а н Б. М., А д а с ь к о В. И., П у р э Р. Р., Запоминающие устройства большой емкости, М., 1968. Д. П. Брунштейн.

МАГНИТНАЯ ГОРА, гора на Вост. склоне Юж. Урала, в Челябинской обл РСФСР. Вые. 616 м. Расположена в полосе осадочных (известняки, песчаники) и эффузивных толщ нижнекаменноугольного возраста, прорванных гранитами, диабазами и др. изверженными породами. На контакте осадочных и из-верженных пород образовалось крупное месторождение магнитного железняка (Магнитогорское месторождение; значит, часть его уже выработана, и гора частично деформирована). Рядом с М.г. на р.Урал в годы Сов. власти построены крупный металлургич. комбинат и г. Магнитогорск.

МАГНИТНАЯ ДЕФЕКТОСКОПИЯ, метод дефектоскопии, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

МАГНИТНАЯ ЗАПИСЬ, система записи и воспроизведения информации, в к-рой запись осуществляется изменением остаточного магнитного состояния носителя или его отд. частей в соответствии с сигналами записываемой информации; при воспроизведении происходит обратное преобразование и вырабатываются сигналы информации, соответствующие указанным изменениям. М. з. очень распространена. Она применяется для записи звука (магнитофоны, диктофоны), изображения и его звукового сопровождения (видеомагнитофоны), сигналов измерения, управления и вычисления (точная запись) и т. д.

При М. з. (рис.) электрич. сигналы, поступающие