БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481азер).

У металлич. М. т. п. толщиной ~10 мкч получено особое пернодич. распределение намагниченности с частичным её выходом из плоскости плёнки - полосовая доменная структура. Поле, необходимое для её перестройки, составляет у пермаллое-вых плёнок 10-100 а!см и уменьшается при нагреве, в частности, световым лучом. М. т. п. из сплава Mn - Bi намагничиваются по нормали к поверхности, диаметр независимо намагничиваемых участков может быть снижен до 1 мкм. Плёнки и более толстые слои окислов редкоземельных металлов прозрачны для видимого света, что важно для изучения процессов их намагничивания и технич. применений.

На М. т. п. осуществляются запоминающие и логич. устройства, основанные на управлении поворотом намагниченности отд. плёночных элементов или участков плёнки, на смещении доменных границ, изменении параметров полосовой доменной структуры и т. д. Запись информации и её неразрушающее считывание возможны как посредством подаваемых по проводникам электрич. сигналов, так и световым лучом. В распространённых запоминающих устройствах матричного типа используется наличие у М. т. п. с прямоугольной петлей гистерезиса двух устойчивых антипараллельных направлений намагниченности, соответствующих записи "О" и "1" в двоичной системе счисления (1 бит информации). Установленное записывающим сигналом направление намагниченности определяет полярность сигнала при считывании и, следовательно, характер записанной информации ("О" или "1"). В таких устройствах наряду с одно- и многослойными плоскими пермаллоевыми М. т. п. применяются цилиндрич., наносимые непосредственно на провода. Плотность записи информации достигает 100 бит/мм2. Низкокоэрцитивные М. т. п. применяются также в сочетании со слоями редкоземельных магнитных окислов, ферритов-гранатов и др., толщиной до 100 мкм, в к-рых могут быть созданы цилиндрич. домены с намагниченностью, нормальной к поверхности слоя. На 1 мм2такой плёнки может расположиться до 600 доменов, что перспективно для дальнейшей миниатюризации и увеличения быстродействия вычислит, машин. Плёнки с полосовой доменной структурой используются для оптич. записи изображений, в частности голографической (см. Голография).

Лит.: Суху Р., Магнитные тонкие пленки, пер. с англ., М., 1967; Б :а р д и ж В. В., Магнитные элементы цифровых вычислительных машин, М., 1967; физика магнитных плёнок, Иркутск, 1968; Колотов О. С., Погожее В. А., Телеснин Р. В., Методы и аппаратура для исследования импульсных свойств тонких магнитных пленок, М., 1970; Фотографирование на магнитные плёнки, М., 1971; "Изв. АН СССР, Серия физика", 1972, т. 36, № 7; Крайзмер Л. П., Быстродействующие ферромагнитные запоминающие устройства, М.- Л., 1964; "Institute of Electrical Electronics Engineers. Transactions on Magnet", 1965-72, v. 1-8. К. М. Поливанов, А. Л. Фрумкин.

МАГНИТНАЯ ЦЕПЬ, последовательность магнетиков, по к-рым проходит магнитный поток. Понятием М. ц. широко пользуются при расчётах электрич. машин, трансформаторов, постоянных магнитов, электромагнитов, реле, магнитных усилителей, электроизмерительных и др. приборов. В технике распространены как М. ц., в к-рых магнитный поток практически полностью проходит в ферромагнитных телах (замкнутые М. ц.), так и М. ц., включающие, помимо ферромагнетиков, диамагнитные среды (напр., воздушные зазоры). Если магнитный поток возбуждается в М. ц. постоянными магнитами, то такую цепь наз. поляризованной. М. ц. без постоянных магнитов наз. нейтральной, магнитный поток в ней возбуждается током, протекающим в обмотках, охватывающих часть или всю М. ц. В зависимости от характера тока возбуждения различают М. ц. постоянного, переменного и импульсного магнитных потоков. Вследствие полной формальной аналогии электрич. и магнитных цепей к ним применим общий математич. аппарат. Напр., для М. ц. аналогом Ома закона служит формула F = Ф*Rm, где Ф - магнитный поток, Rm - магнитное сопротивление, F - магнитодвижущая сила. К М. ц. применимы Кирхгофа правила и т. д. Существует, однако, и принципиальное различие между М. ц. и электрической цепью: в М. ц. с неизменным во времени потоком Ф не выделяется Джоулево тепло (см. Джоуля - Ленца закон), т. е. нет рассеяния электромагнитной энергии.

Лит.: Калашников С. Г., Электричество, М., 1956 (Общий курс физики, т. 2); Поливанов К. М., Ферромагнетики, М.- Л., 1957.

МАГНИТНОЕ НАСЫЩЕНИЕ, состояние парамагнетика или ферромагнетика, при к-ром его намагниченность J достигает предельного значения Jбесконечность - намагниченности насыщения, не меняющейся при дальнейшем увеличении напряжённости намагничивающего поля. В случае ферромагнетиков Jбесконечность достигается при окончании процессов т. н. технич. намагничивания: а) роста доменов с магнитным моментом, ориентированным по оси лёгкого намагничивания, в результате процесса смещения границ доменов; 6) поворота вектора намагниченности образца в направлении намагничивающего поля (т. н. процесса вращения); и парапроцесса - увеличения под действием сильного внешнего поля числа спинов, ориентированных по полю, за счёт спинов, имеющих антипараллельную ориентацию. На практике обычно получают технич. М. н. (при 20 оС в полях от неск. э до ~104 э), т. к. для осуществления парапроцесса (вдали от Кюри точки) требуются очень сильные поля. В случае парамагнетиков состояние, близкое к М. н., достигается в полях ~10 кэ (~103 ка/м) при темп-pax ~1К.

Лит.: Киренский Л. В., Магне-тизм, 2 изд., М., 1967; Вонсовский С. В., Магнетизм, М., 1971.

МАГНИТНОЕ ОБОГАЩЕНИЕ, способ отделения полезных минералов от пустой породы и вредных примесей, основанный на действии магнитного поля на минеральные частицы, обладающие различной магнитной восприимчивостью. Создание первых магнитных сепараторов относится к 18 в., а совершенствование и пром. применение - к 1892-1906 (Швеция и др.). В России первый магнитный сепаратор сконструирован в 1911; их серийное изготовление и сооружение фабрик для М. о. началось только в годы Сов. власти. В СССР на обогатит, фабриках с помощью М. о. ежегодно перерабатывается ок. 500 млн. т полезных ископаемых (1973). Исходные материалы для прямого М. о.: бедные железные руды (гл. обр. магнетитовые), марганцевые, титановые (содержащие ильменит и титаномагнетит), вольфрамовые (вольфрамитовые) и нек-рые др. полезные ископаемые, при этом в магнитную фракцию (магнитный концентрат) выделяются ценные минералы. В результате М. о. содержание полезного компонента увеличивается в неск. раз и составляет в магнитных концентратах 95% и более, а содержание вредных Примесей значительно снижается. Доля (извлечение) полезного минерала, переходящего в концентрат (магнитную фракцию), обычно не менее 75% от исходного его количества, а для сильномагнитных - может быть более 95%. Различают М. о., при к-ром магнитные или сильномагнитные минералы под действием магнитного поля выделяются в магнитную фракцию, а слабомагнитные или немагнитные минералы - в немагнитную.

Применяется также "обратное" М. o., когда минералы магнитной фракции являются вредной примесью (напр., при перечистке оловянных, циркониевых, литиевых, бериллиевых, полевошпатовых, кварцевых и др. концентратов).

Принципиальная схема М. о. показана на рис. При сухом М. о. руда загружается на верхние барабаны магнитного сепаратора, в к-рых помещены разомкнутые постоянные магниты, создающие на барабане поле напряжённостью ок. 90 ка/м. Магнетитовая руда притягивается к полюсам (к поверхности барабана), а слабомагнитная фракция отрывается н попадает для перечистки на нижние барабаны с более сильным полем (110 ка/м). Здесь происходит до-извлечение менее магнитных кусков руды из хвостов. В случае мокрого М. о. тонкоизмельчённая магнетитовая руда с водой поступает под барабаны, вращающиеся навстречу потоку пульпы и извлекающие из него ферромагнитные минералы. При мокром обогащении марганцевых и др. слабомагнитных руд сепараторы имеют значительно более сильное поле (1500 ка/м), создаваемое в зазорах между валками и полюсами благодаря замкнутой электромагнитной системе. Рудные частицы из пульпы извлекаются валками и выносятся ими в концентратное отделение ванны. Менее магнитные фракции проходят перечистку на нижних валках. Параметры устройства и работы магнитных сепараторов определяются большим числом взаимосвязанных элементов: типом магнитной системы, числом, формой и расположением полюсов, составом магнитных материалов, диаметром роторов, частотой их вращения, крупностью руды, содержанием и вкраплением магнитных минералов, а при мокром М. о.- ещё и количеством воды, типом ванны и пр.

Схема магнитного обогащения магнетитовой руды на Соколовско-Сарбайском комбинате (Казахская ССР).

В СССР освоен (1971) выпуск большой номенклатуры магнитных сепараторов, конусов, железоотделителей, намагничивающих и размагничивающих устройств для сухого и мокрого М. о. сильномагнитных руд (магнитная восприимчивость св. 3*10-5) и для регенерации суспензий, а также для обогащения слабомагнитных материалов, восприимчивость к-рых превышает лишь 1,2*10-7. Созданы оригинальные конструкции барабанных магнитных сепараторов с электромагнитными системами и постоянными магнитами (для магнетитовых руд и суспензий) и валковых, роторных и полиградиентных барабанно-ручейковых сепараторов (для слабомагнитных руд). Это оборудование используется не только для производства рудных, но и металлизированных концентратов. Выпуск последних резко возрастает в связи с развитием прямого восстановления руд, т. е. бескоксовой и порошковой металлургии.

Лит.: Кармазин В. И., Современные методы магнитного обогащения руд черных металлов, М., 1962; Д е р к а ч В. Г., Специальные методы обогащения полезных ископаемых, М., 1966; Кармазин В. В., Кармазин В. И., Бинкевич В. А., Магнитная регенерация и сепарация при обогащении руд и углей, М., 1968. В. И. Кармазин.

МАГНИТНОЕ ОХЛАЖДЕНИЕ, метод получения темп-р ниже 1 К путём адиабатического размагничивания парамагнитных веществ. Предложен П. Дебаем и амер. физиком У. Джиоком (1926); впервые осуществлён в 1933. М. о.- один из двух практически применяемых методов получения темп-р ниже 0,ЗК (др. методом является растворение жидкого гелия 3Не в жидком 4Не).

Для М. о, применяют соли редкоземельных элементов (напр., сульфат гадолиния), хромокалиевые, железоаммониевые, хромометиламмониевые квасцы и ряд др. парамагнитных веществ. Кристаллич. решётка этих веществ содержит ионы Fe, Cr, Gd с недостроенными электронными оболочками и отличным от нуля собственным магнитным моментом {спином). Парамагнитные ионы разделены в кристаллич. решётке большим числом немагнитных атомов. Это приводит к тому, что магнитное взаимодействие ионов оказывается слабым: даже при низких темп-pax, когда тепловое движение значительно ослаблено, силы взаимодействия не способны упорядочить систему хаотически ориентированных спинов. В методе М. о. применяется достаточно сильное (~ неск. кэ) внешнее магнитное поле, к-рое, упорядочивая направление спинов, намагничивает парамагнетик. При выключении внешнего поля (размагничивании парамагнетика) спины под действием теплового движения атомов (ионов) кристаллич. решётки вновь приобретают хаотич. ориентацию. Если размагничивание осуществляется адиабатически (в условиях теплоизоляции), то темп-pa парамагнетика понижается (см. Магнетокалорический эффект).

Рис. 1. Энтропийная диаграмма процесса магнитного охлаждения (S - энтропия, Т - темп-pa). Кривая So - изменение энтропии рабочего вещества с темп-рой без магнитного поля; Sн - изменение энтропии вещества в поле напряжённостью Н; Speш - энтропия кристаллич. решётки (Speш~ Т3): Ткон- конечная темп-ра в цикле магнитного охлаждения.

Процесс М. о. принято изображать на термодинамич. диаграмме в координатах темп-pa Т-энтропия S (рис. 1). Получение низких темп-р связано с достижением состояний, в к-рых вещество обладает малыми значениями энтропии, В энтропию кристаллич. парамагнетика, характеризующую неупорядоченность его структуры, свою долю вносят тепловые колебания атомов кристаллич. решётки ("тепловой беспорядок") и разориентированность спинов ("магнитный беспорядок"). При Т -> 0 энтропия решётки Speш убывает быстрее энтропии системы спинов Sмагн, так что Speш при темп-рах Т < 1К становится исчезающе