БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

в других - к Солнцу. Регулярность межпланетного М. п. может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков, быстрых частиц, рождённых солнечными вспышками (см. Космическая магнитогидродинамика).

Во всех процессах на Солнце - вспышках, появлении пятен и протуберанцев, рождении солнечных космич. лучей М. п. играет важнейшую роль (см. Солнечный магнетизм). Измерения, основанные на эффекте Зеемана, показали, что М. п. солнечных пятен достигает неск. тыс. гс, протуберанцы удерживаются полями ~ 10-100 гс (при среднем значении общего М. п. Солнца ~1 гс). Удалённость звёзд не позволяет пока наблюдать у них М. п. типа солнечных. В то же время более чем у двухсот т. н. магнитных звёзд обнаружены аномально большие ноля (до 3,4*104 гс). Поля ~ 107 гс измерены у неск. звёзд - белых карликов. Особенно большие (~1010-1012гс) М. п. должны быть, по совр. представлениям, у нейтронных звёзд. С М. п. космич. объектов тесно связано ускорение заряженных частиц (электронов, протонов, ядер) до релятивистских скоростей (близких к скорости света). При движении таких частиц в космич. М. п. возникает электромагнитное синхротронное излучение. Индукция межзвёздного М. п., определённая по Зеемана эффекту (в радиолинии 21 см спектра водорода) и по Фарадея эффекту (вращению плоскости поляризации электромагнитного излучения в М. п.), составляет всего ~5*10-6 гс. Однако общая энергия межзвёздного (галактического) М. п. превышает энергию хаотического движения частиц межзвёздного газа и сравнима с энергией космических лучей.

В явлениях микромира роль М. п. столь же существенна, как и в космич. масштабах. Это объясняется существованием у всех частиц - структурных элементов вещества (электронов, протонов, нейтронов) магнитного момента, а также действием М. п. на движущиеся электрические заряды. Если суммарный магнитный момент М частиц, образующих атом или молекулу, равен нулю, то такие атомы и молекулы наз. диамагнитными. Атомы (ионы, молекулы) с М не равно 0 наз. парамагнитными. У всех атомов (как с М = 0, так и с М не равно 0) при наложении внешнего М. п. возникает индуцированный магнитный момент, направленный навстречу намагничивающему полю (см. Диамагнетизм). Однако у парамагнитных атомов в М. п. этот эффект маскируется преим. поворотом их магнитных моментов по полю (см. Парамагнетизм). У парамагнетиков и ферромагнетиков намагниченность увеличивается с ростом внешнего М. п. (до состояния насыщения). Вид кривых намагничивания ферромагнетиков (и антиферромагнетиков) в значит, степени определяется магнитным взаимодействием атомных носителей магнетизма. Это взаимодействие обусловливает также большое разнообразие типов атомной магнитной структуры у ферримагнетиков (ферритов).

Внутрикристаллич. М. п., измеренное в ферримагнетиках (ферритах-гранатах) на ядрах ионов железа, оказалось ~5*105гс, на ядрах, редкоземельного металла диспрозия ~8*106гс. На расстоянии порядка размера атома (~ 10-8 см) М. п. ядра составляет ~50 гс. Внешнее М. п. и внутриатомные М. п., создаваемые электронами атома и его ядром, расщепляют энергетич. уровни атома (Зеемана эффект); в результате спектры атомов приобретают сложное строение (см. Тонкая структура и Сверхтонкая структура). Расстояния между зеемановскими подуровнями энергии (и соответствующими спектральными линиями) пропорциональны величине М. п., что позволяет спектральными методами определять значение М. п С возникновением зеемановских подуровней энергии в М. п. и с квантовыми переходами между ними связано ещё одно важное физ. явление - резонансное поглощение веществом радиоволн (явление магнитного резонанса). Зависимость положения и формы линий спектра магнитного резонанса от особенностей взаимодействия молекул, атомов, ионов, а также ядер в жидкостях и твёрдых телах даёт возможность исследовать при помощи электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР) структуру жидкостей, кристаллов и сложных молекул, кинетику химических и биохимических реакций.

М. п. способно заметно влиять на оптич. свойства среды и процессы взаимодействия электромагнитного излучения с веществом (см. Фарадея эффект, Магнитооптика), вызывать гальваномагнитные явления и термомагнитные явления в проводниках и полупроводниках. М. п. оказывает влияние на сверхпроводимость веществ: при достижении определённой величины М. п. разрушает сверхпроводимость (см. Критическое магнитное поле). М. п. при намагничивании ферромагнитных тел изменяет их форму и упругие свойства (см. Магнитострикция). Особые свойства в М. п. приобретает плазма. М. п. препятствует движению заряженных частиц плазмы поперёк силовых линий поля (см. Магнитная гидродинамика). Этот эффект используется, напр., для термоизоляции плазмы и обеспечения её устойчивости в установках для изучения свойств высокотемпературной плазмы.

Применение магнитных полей в науке и технике. М. п. обычно подразделяют на слабые (до 500 гс), средние (500 гс - 40 кгс), сильные (40 кгс - 1 Мгс) и сверхсильные (св. 1 Мгс). На использовании слабых и средних М. п. основана практически вся электротехника, радиотехника и электроника. В науч. исследованиях средние М. п. нашли применение в ускорителях заряженных частиц, в Вильсона камере, искровой камере, пузырьковой камере и др. трековых детекторах ионизующих частиц, в масс-спектрометрах, при изучении действия М. п. на живые организмы и т. д. Слабые и средние М, п. получают при помощи магнитов постоянных, электромагнитов, неохлаждаемых соленоидов, магнитов сверхпровод ящих.

М. п. до ~500 кгс широко применяются в науч. и прикладных целях: в физике твёрдого тела для изучения энергетич. спектров электронов в металлах, полупроводниках и сверхпроводниках; для исследования ферро- и антиферромагнетизма, для удержания плазмы в МГД-генераторах и двигателях, для получения сверхнизких темп-р (см. Магнитное охлаждение), в электронных микроскопах для фокусировки пучков электронов и т. д. Для получения сильных М. п. применяют сверхпроводящие соленоиды (до 150-200 кгс, рис. 2), соленоиды, охлаждаемые водой (до 250 кгс, рис. 3), импульсные соленоиды (до 1,6 Мгс,рис. 4). Силы, действующие на проводники с током в сильных М. п., могут быть очень велики (так, в полях ~ 250 кгс механич. напряжения достигают 4*108 н/м2, т. е. предела прочности меди). Эффект давления М. п. учитывают при конструировании электромагнитов и соленоидов, его используют для штамповки изделий из металла. Предельное значение поля, к-рое можно получить без разрушения соленоида, не превышает 0,9 Мгс.

Рис. 2. Сверхпроводящий соленоид с обмоткой из сплава Nb - Zr на 30 кгс (рабочий объём диаметром 32 мм находится при комнатной температуре): 1 - соленоид: 2 - жидкий гелий: 3 - жидкий азот: 4 - азотный экран; 5 - кожух; 6 - заливная горловина.

Рис. 3. Схематический разрез водоохлаж-даемого соленоида на 250 кгс (движение воды показано стрелками). 1-я секция имеет массу 2 кг, потребляет мощность 0,4 Мвт и создаёт поле Втах~ 45 кгс; 2-я секция - 16 кг, 2 Мвт и 65 кгс; 3-я секция - 1250 кг, 12 Mвm и 140 кгс.

Рис. 4. Модель импульсного одновиткового соленоида (длина 10 мм, диаметр отверстия 2 мм). Источник питания - батарея конденсаторов на 2,4 кдж. Получаемые поля - до 1,6 Мгс.

Сверхсильные М. п. используют для получения данных о свойствах веществ в полях св. 1 Мгс и при сопутствующих им давлениях в десятки млн. атмосфер. Эти исследования позволят, в частности, глубже понять процессы, происходящие в недрах планет и звёзд. Сверхсильные М. п. получают методом направленного взрыва (рис. 5). Медную трубу, внутри к-рой предварительно создано сильное импульсное М. п., радиально сжимают давлением продуктов взрыва. С уменьшением радиуса R трубы величина М. п. в ней возрастает ~ 1/R2 (если магнитный поток через трубу сохраняется). М. п., получаемое в установках подобного типа (т. н. взрывомагнитных генераторах), может достигать неск. десятков Мгс. К недостаткам этого метода следует отнести кратковременность существования М. п. (неск. мксек), небольшой объём сверхсильного М, п. и разрушение установки при взрыве.

Рис. 5. Взрывомагнитный генератор. Первичное импульсное поле создаётся разрядом батареи конденсаторов. Когда поле достигает максимальной величины, осуществляется взрыв (ВВ - взрывчатое вещество), приводящий к резкому возрастанию поля в медной трубе (ловушке магнитного поля). Тригер применялся для синхронизации первичного импульсного магнитного поля и детонации взрывчатого вещества.

Лит.: Ландау Л. Д. и Л и ф-шиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); Т а м м И. Е., Основы теории электричества, 8 изд., М., 1966; Парселл Э., Электричество и магнетизм, пер. с англ., М., 1971 (Берклеевский курс физики, т. 2); Карасик В. Р., Физика и техника сильных магнитных полей, М., 1964; Монтгомери Б., Получение сильных магнитных полей с помощью соленоидов, пер. с англ., М., 1971; Кнопфель Г., Сверхсильные импульсные магнитные поля, пер. с англ., М., 1972; Кольм Г., фриман А., Сильные магнитные поля, "Успехи физических наук", 1966, т. 88. в. 4, с. 703; С а х а р о в А. Д., Взрывомагнитные генераторы, там же, с. 725; Б и т т е р Ф., Сверхсильные магнитные поля, там же, с. 735; Вайнштейн С. И., Зельдович Я. Б., О происхождении магнитных полей в австрофизике, там же, 1972, т. 106, в. 3.

Л. Г. Асламазов, В. Р. Карасик, , С. Б.Пикелънер.






1542.htm
МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ, взаимодействие между электрически нейтральными молекулами или атомами; определяет существование жидкостей и молекулярных кристаллов, отличие реальных газов от идеальных и проявляется в разнообразных физич. явлениях. М. в. зависит от расстояния r между молекулами и, как правило, описывается потенциальной энергией взаимодействия U(r) (потенциалом М. в.), т. к. именно средняя потенциальная энергия взаимодействия определяет состояние и многие свойства вещества.

Впервые М. в. принял во внимание Я. Д. ван дер Ваалъс (1873) для объяснения свойств реальных газов и жидкостей. Ван дер Ваальс предположил, что на малых расстояниях т между молекулами действуют силы отталкивания, к-рые с увеличением расстояния сменяются силами притяжения. На основе этих представлений, даже не рассматривая количественной зависимости М. в. от расстояния, он получил т. н. Ван-дер-Ваалъса уравнение состояния реального газа.

М. в. имеет электрич. природу и складывается из сил притяжения (ориентационных, индукционных и дисперсионных) и сил отталкивания.

Ориентационные силы действуют между полярными молекулами, т. е. обладающими дипольными электрич. моментами (см. Диполь электрический). Сила притяжения между двумя полярными молекулами максимальна в том случае, когда их дипольные моменты располагаются вдоль одной линии (рис. 1). Эта сила возникает благодаря тому, что расстояния между разноимёнными зарядами немного меньше, чем между одноимёнными.


В результате притяжение диполей превосходит их отталкивание. Взаимодействие диполей зависит от их взаимной ориентации, и поэтому силы дипольного взаимодействия наз. ориентационными. Хаотич. тепловое движение непрерывно меняет ориентацию полярных молекул, но, как показывает расчёт, среднее по всевозможным ориен-тациям значение силы имеет определённую величину, не равную нулю. Потенциальная энергия ориентационного М. в. Uор(r) ~ р1р2/r6, где p1 и p2 - дипольные моменты взаимодействующих молекул. Соответственно сила взаимодействия Fop~ r-7. Сила Fop убывает с расстоянием значительно быстрей, чем кулоновская сила взаимодействия заряженных тел

(FКУЛ ~ r-2 ).

Индукционные (или поляризационные) силы действуют между полярной и неполярной молекулами. Полярная молекула создаёт электрич. поле, к-рое поляризует молекулу с электрич. зарядами, равномерно распределёнными по объёму. Положительные заряды смещаются по направлению электрич. поля, а отрицательные — против. В результате у неполярной молекулы индуцируется дипольный момент.

Энергия М. в. в этом случае пропорциональна дипольному моменту р1 полярной молекулы и поляризуемости а2, характеризующей способность другой молекулы поляризоваться: Uин