БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481л. логич. переменной произвольной формулы.

Правило вывода заключений. Из формул
[1409-39.jpg]
выводится формула
[1409-40.jpg]

Эти правила отражают обычные способы рассуждений: переход от общего к частному и вывод следствий из доказанных посылок.

Различие между двумя исчислениями высказываний проявляется в наборах их аксиом. В то время как в классич. исчислении высказываний в качестве аксиом принимаются все формулы 1-11, в интуиционистском исчислении высказываний лишь первые десять из этих формул принимаются в качестве аксиом. Одиннадцатая формула, выражающая закон исключённого третьего (см. ниже), оказывается невыводимой в интуиционистском исчислении. Чтобы получить представление о выводе формул в исчислениях высказываний, выведем в интуиционистском исчислении формулу

[1409-41.jpg]выражающую закон противоречия.

Применим правило подстановки к аксиомам 3 и 4, подставив в них формулу [1409-42.jpg] вместо переменной В:

Подставив затем
[1409-43.jpg]
в аксиому 10 формулу
[1409-44.jpg]
вместо А, получим

Подставив
[1409-45.jpg]
далее в формулу (3) формулу А вместо переменной В, получим

Применив
[1409-46.jpg]
к формулам (1) и (4) правило вывода заключений, получим

Применив,
[1409-47.jpg]
наконец, правило вывода заключений к формулам (2) и (5), полу-

чим формулу
[1409-48.jpg]
к-рая, т. о., выводима в интуиционистском исчислении высказываний.

Формальное различие двух исчислений высказываний отражает глубокое различие в их истолкованиях, различие, касающееся смысла логич. переменных, т. е. самого понимания термина "высказывание". При общепринятом истолковании классич. исчисления высказываний этот термин понимается примерно как "суждение" в смысле Аристотеля (см. Суждение). Предполагается, что высказывание непременно истинно или ложно. Подстановка произвольных высказываний, т. е. суждений, вместо логич. переменных в формулу даёт нек-рую логич. комбинацию этих суждений, рассматриваемую также как суждение. Истинность или ложность этого суждения определяется исключительно истинностью или ложностью суждений, подставляемых вместо логических переменных, согласно следующим определениям смысла логических связок.

Суждение вида
[1409-49.jpg]
наз. конъюнкцией суждений Р и О. есть суждение истинное, когда истинны оба эти суждения, и ложное, когда ложно хотя бы одно из них. Суждение вида
[1409-50.jpg]
наз. дизъюнкцией суждений Р и О. есть суждение истинное, когда истинно хотя бы одно из этих суждений, и ложное, когда ложны оба. Суждение вида
[1409-51.jpg]
наз. импликаци- е и суждений Р и О, есть суждение ложное, когда истинно Р и ложно О. и истинное во всех остальных случаях. Суждение вида
[1409-52.jpg]
наз. отрицанием суждения Р, есть суждение истинное, когда Р ложно, и ложное, когда Р истинно.

Необходимо отметить, что, согласно данному выше определению, импликация не вполне совпадает по смыслу с житейским словоупотреблением связки "если..., то...". Однако в математике эта связка обычно применялась именно в смысле этого определения импликации. Доказывая теорему вида "если Р, то Q", где Р и О суть нек-рые математич. суждения, математик делает предположение об истинности Р и тогда доказывает истинность О- Он продолжает считать теорему верной, если впоследствии будет доказана ложность Р или истинность О будет доказана и без предположения об истинности Р. Опровергнутой он считает эту теорему лишь тогда, когда установлена истинность Р и вместе с тем ложность Q. Всё это вполне согласуется с определением импликации
[1409-53.jpg]
Необходимо также подчеркнуть принятое в математич. Л. неисключающее понимание дизъюнкции. Дизъюнкция
[1409-54.jpg]
по определению, истинна и в том случае, когда истинны оба суждения Р и О- Формула
[1409-55.jpg]
наз. классически общезначимой, если истинно всякое суждение, получаемое из 21 в результате подстановок любых суждений вместо логич. переменных. Классически общезначимой является, напр., формула 11. Её общезначимость есть не что иное, как закон исключённого третьего в следующей форме: "если одно из двух суждений есть отрицание другого, то хотя бы одно из них верно". Этот закон выражает основное свойство суждений: быть истинным или ложным. Обычную формулировку этого закона, включающую и закон противоречия, см. в ст. Исключённого третьего принцип.

Нетрудно проверить, что и все аксиомы 1-11 классически общезначимы и что правила вывода в применении к классически общезначимым формулам дают лишь классически общезначимые формулы. Отсюда следует, что все выводимые формулы классического исчисления высказываний классически общезначимы. Обратное также имеет место: всякая классически общезначимая формула выводима в классическом исчислении высказываний, в чём состоит полнота этого исчисления.

Иная трактовка логич. переменных лежит в основе интуиционистского истолкования исчисления высказываний. Согласно этой трактовке, всякое математич. высказывание требует проведения нек-рого математич. построения с нек-ры- ми заданными свойствами. Высказывание можно утверждать, коль скоро это построение выполнено. Конъюнкцию
[1409-56.jpg]
двух высказываний Л и В можно утверждать тогда и только тогда, когда можно утверждать как А, так и В.

Дизъюнкцию
[1409-57.jpg]
можно утверждать тогда и только тогда, когда можно утверждать хотя бы одно из высказываний А и В. Отрицание [1409-58.jpg]высказывания А можно утверждать тогда и только тогда, когда у нас есть построение, приводящее к противоречию предположение о том, что построение, требуемое высказыванием А, выполнено. (При этом "приведение к противоречию" считается первоначальным понятием.) Импликацию
[1409-59.jpg]
можно утверждать тогда и только тогда, когда мы располагаем таким построением, к-рое, будучи объединено с любым построением, требуемым высказыванием А, даёт построение, требуемое высказыванием В.
Формула
[1409-60.jpg]
наз. интуиционистски общезначимой тогда и только тогда, когда можно утверждать всякое высказывание, получаемое из 21 в результате подстановки любых математич. суждений вместо логич. переменных; точнее говоря, в том случае, когда имеется общий метод, позволяющий при произвольной такой подстановке получать построение, требуемое результатом подстановки. При этом понятие общего метода интуиционисты также считают первоначальным .

Формулы 1-10 являются интуиционистски общезначимыми, тогда как формула И, выражающая классич. закон исключённого третьего, не является таковой.

В известном отношении близкой к интуиционизму является точка зрения конструктивной математики, уточняющая несколько расплывчатые интуиционистские понятия импликации и общего метода на основе точного понятия алгоритма. С этой точки зрения закон исключённого третьего также отвергается. Л. конструктивной математики находится в стадии разработки.

С методом формализации доказательств связано понятие формальной системы. Формальная система включает след, элементы.

1. Формализованный язык с точным синтаксисом, состоящий из точных и формальных правил построения осмысленных выражений, наз.ф ормулами данного языка.

2. Чёткую семантику этого языка, состоящую из соглашений, определяющих понимание формул и тем самым условия их истинности.

3. Исчисление (см. выше), состоящее из формализованных аксиом и формальных правил вывода. При наличии семантики эти правила должны быть согласованы с ней, т. е. при применении к верным формулам давать верные формулы. Исчисление определяет выводы (см. выше) и выводимые формулы - заключительные формулы выводов. Для выводов имеется распознающий алгоритм - единый общий метод, с помощью которого для любой цепочки знаков, применяемых в исчислении, можно узнавать, является ли она выводом. Для выводимых формул распознающий алгоритм может быть и невозможен (примером является исчисление предикатов, см. Логика предикатов).

Об исчислении говорят, что оно н е- противоречиво, если в нём не выводима никакая формула 21 вместе с формулой П 21. Задача установления непротиворечивости применяемых в математике исчислений является одной из главных задач математич. Л. Имея в виду охват той или иной содержательно определённой области математики, исчисление считают полным относительно этой области, если в нём выводима всякая формула, выражающая верное утверждение из этой области. Другое понятие полноты исчисления связано с требованием иметь для всякого утверждения, формулируемого в данном исчислении, либо его доказательство, либо его опровержение. Первостепенное значение в связи с этими понятиями имеет теорема Гёделя, утверждающая несовместимость требований полноты с требованием непротиворечивости для весьма широкого класса исчислений. Согласно теореме Гёделя, никакое непротиворечивое исчисление из этого класса не может быть полным относительно арифметики: для всякого такого исчисления может быть построено верное арифметич. утверждение, формализуемое, но не выводимое в исчислении. Эта теорема, не снижая значения математич. Л. как мощного организующего средства в науке, убивает надежды на эту дисциплину как на нечто способное осуществить охват математики в рамках одной формальной системы. Надежды такого рода высказывались многими учёными, в том числе основоположником математического формализма Гильбертом.

В 70-е гг. 20 в. получила развитие идея полуформальной системы. Полуформальная система - это также система некоторых правил вывода. Однако некоторые из этих правил могут иметь существенно иной характер, чем правила вывода формальной системы. Они, например, могут допускать выведение новой формулы после того, как с помощью интуиции создалось убеждение в выводимости любой формулы такого-то вида. Сочетание этой идеи с идеей ступенчатого построения математической Л. лежит в основе одного из совр. построений логики конструктивной математики. В приложениях математич. Л. часто применяются исчисления предикатов - классическое и интуиционистское.

Математич. Л. органически связана с кибернетикой, в частности с математич. теорией управляющих систем и математической лингвистикой. Приложения математич. Л. к релейно-контактным схемам основаны на том, что всякая двухполюсная релейно-контактная схема в след, смысле моделирует нек-рую формулу 21 классич. исчисления высказываний. Если схема управляется п реле, то столько же различных пропозициональных переменных содержит И, и если обозначить через Si суждение "Реле номер i сработало", то цепь будет тогда и только тогда замкнута, когда будет верен результат подстановки суждений 23( вместо соответствующих логич. переменных в 21. Построение такой моделируемой формулы, описывающей "условия работы" схемы, оказывается особенно простым для т. н. П - с х е м, получаемых из элементарных одноконтактных цепей путём параллельных и последоват. соединений. Это связано с тем, что параллельные и последоват. соединения цепей моделируют соответственно дизъюнкцию и конъюнкцию суждений. Действительно, цепь, полученная путём параллельного (последовательного) соединения цепей Ц1 и Ц2, тогда и только тогда замкнута, когда замкнута цепь U,i или (и) замкнута цепь Ц2. Применение исчисления высказываний к релейно-контактным схемам открыло плодотворный подход к важным проблемам совр. техники. Это же применение обусловило постановку и частичное решение многих новых и трудных проблем математич. Л., к числу к-рых в первую очередь относится т. н. п р о- б л е м а минимизации, состоящая в разыскании эффективных методов нахождения простейшей формулы, равносильной данной формуле.

Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в совр. автоматах. Управляющие схемы иных типов, в частности схемы из электронных ламп или полупроводниковых элементов, имеющие ещё большее практич. значение, также могут быть разрабатываемы с помощью математич. Л., к-рая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык математич. Л. оказался также применимым в теории программирования, создаваемой в связи с р