БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481тмосферах меньшую роль. Определение физич. условий в атмосфере при Л. р. сводится к совместному решению уравнений переноса излучения и лучистого равновесия. К ним добавляется уравнение механич. равновесия атмосферы под действием силы притяжения и сил газового и светового давления. Делается также допущение о термо-динамич. равновесии при собственной темп-ре в каждом месте. Решение указанных уравнений позволяет определить изменение плотности и темп-ры с глубиной, а также поле излучения в атмосфере звезды. В частности, при этом находится распределение энергии в непрерывном спектре звезды. Сравнивая вычисленное таким путём распределение энергии в спектре с наблюдённым, проверяют правильность принятой теории.

Разрез перекрытий помещения с панелями лучистого отопления, обогреваемыми: а - горячей водой или паром; б - горячим воздухом; в - электроэнергией; 1 - перекрытие помещения (из железобетона); 2 -вмонтированные в перекрытие стальные трубы, по к-рым проходит горячая вода или пар; 3 - каналы (оставляемые при формовании перекрытия), по к-рым проходит горячий воздух; 4-греющий электрический кабель.

При теоретич. определении линейчатых спектров звёзд в уравнении Л. р. учитывается перераспределение излучения по частотам внутри линии. Теория даёт возможность найти профиль спектральной линии, а также её эквивалентную ширину, т. е. ширину соседнего участка непрерывного спектра, энергия в к-ром равна полной энергии, поглощённой в линии. Большое значение имеет зависимость эквивалентной ширины от числа поглощающих атомов (т. н. кривая роста), использование к-рой позволяет определить химнч. состав звёздных атмосфер. По профилям линий можно судить о вращении звёзд, о наличии в их атмосферах магнитных полей и др. эффектах. Особое место в теории Л. р. занимает исследование звёзд с яркими линиями в спектрах. Такие спектры возникают в оболочках, выбрасываемых различными нестационарными звёздами (новыми, звёздами типа Be и др.). См. также Звёзды.

Лит.: Соболев В. В., Курс теоретической астрофизики, М., 1967; Иванов В. В., Перенос излучения и спектры небесных тел, М., 1969. В. В. Соболев.

ЛУЧИСТЫЕ ГРИБКИ, лучистые грибы, группа микроорганизмов, занимающая промежуточное положение между бактериями и грибами; то же, что актиномицеты.

ЛУЧИСТЫЙ ТЕПЛООБМЕН, радиационный теплообмен, осуществляется в результате процессов превращения внутр. энергии вещества в энергию излучения, переноса энергии излучения и её поглощения веществом. Протекание процессов Л. т. определяется взаимным расположением в пространстве тел, обменивающихся теплом, свойствами среды, разделяющей эти тела. Существ, отличие Л. т. от др. видов теплообмена (теплопроводности, конвективного теплообмена) заключается в том, что он может протекать и при отсутствии материальной среды, разделяющей поверхности теплообмена, т. к. осуществляется в результате распространения электромагнитного излучения.

Лучистая энергия, падающая в процессе Л. т. на поверхность непрозрачного тела и характеризующаяся значением потока падающего излучения Qпад, частично поглощается телом, а частично отражается от его поверхности (см. рис.).

Схематичное изображение потоков излучения при лучистом теплообмене.

Поток поглащенного излучения определяется соотношением:

Опогл=AQпад где А-поглощательная способность тела. В связи с тем, что для непрозрачного тела Qпад = Qпогл+Qотр, где ООТР - поток отражённого от поверхности тела излучения, эта последняя величина равна: Оотр = (1-А)Qпад, где 1 - А = R - отражат. способность тела. Если поглощат. способность тела равна 1, а следовательно, его отражат. способность равна 0, т. е. тело поглощает всю падающую на него энергию, то оно наз. абсолютно чёрным телом.

Любое тело, темп-pa к-рого отлична от абс. нуля, испускает энергию, обусловленную нагревом тела. Это излучение наз. собственным излучением тела и характеризуется потоком собственного излучения О ".б. Собственное излучение, отнесённое к единице поверхности тела, наз. плотностью потока собственного излучения, или лучеиспускат. способностью тела. Последняя в соответствии со Стефана - Больцмана законом излучения пропорциональна темп-ре тела в четвёртой степени. Отношение лучеиспускат. способности к.-л. тела к лучеиспускат. способности абсолютно чёрного тела при той же темп-ре наз. степенью черноты. Для всех тел степень черноты меньше 1. Если для нек-рого тела она не зависит от длины волны излучения, то такое тело наз. серым. Характер распределения энергии излучения серого тела по длинам волн такой же, как у абсолютно чёрного тела, т. е. описывается Планка законом излучения. Степень черноты серого тела равна его поглощат. способности.

Поверхность любого тела, входящего в систему Л. т., испускает потоки отражённого излучения Qотр и собственного излучения Qсоб, суммарное количество энергии, уходящей с поверхности тела, наз. потоком эффективного излучения Qэфф и определяется соотношением: Qэфф=Qотр+Qсоб. Часть поглощённой телом энергии возвращается в систему в виде собственного излучения, поэтому результат Л. т. можно представить как разность между потоками собственного и поглощённого излучения. Величина Qрез =Qсоб - Qпогл называется потоком результирующего излучения и показывает, какое количество энергии получает или теряет тело в единицу времени в результате Л. т. Поток результирующего излучения можно выразить также в виде Qрез=Qэфф-Qпад, т. е. как разность между суммарным расходом и суммарным приходом лучистой энергии на поверхности тела. Отсюда, учитывая, что Qпад=(Qсоб-Qрез)/А, получим выражение, к-рое широко используется в расчётах Л. т.:
[1506-3.jpg]

Задачей расчётов Л. т. является, как правило, нахождение результирующих потоков излучения на всех поверхностях, входящих в данную систему, если известны темп-ры и оптич. характеристики всех этих поверхностей. Для решения этой задачи, помимо последнего соотношения, необходимо выяснить связь между потоком Qпад пад на данную поверхность и потоками Q Эфф на всех поверхностях, входящих в систему Л. т. Для нахождения этой связи используется понятие среднего углового коэфф. излучения, к-рый показывает, какая доля полусферического (т. е. испускаемого по всем направлениям в пределах полусферы) излучения нек-рой поверхности, входящей в систему Л. т., падает на данную поверхность. Т. о., поток Qпад на к.-л. поверхности, входящие в систему Л. т., определяется как сумма произведений Qэфф всех поверхностей (включая и данную, если она вогнутая) на соответствующие угловые коэфф. излучения.

Л. т. играет значит, роль в процессах теплообмена, происходящих при темп-рах ок. 1000 оС и выше. Он широко распространён в различных областях техники: в металлургии, теплоэнергетике, ядерной энергетике, ракетной технике, хим. технологии, сушильной технике, гелиотехнике.

Лит.: Невский А. С., Теплообмен излучением в металлургических печах и топках котлов, Свердловск, 1958; Блох А. Г., Основы теплообмена излучением, М.- Л., 1962; Исаченко В. П., Осипов В. А., Сукомел А. С., Теплопередача, М., 1969. В. А. Арутюнов.




1509.htm
ЛЮМИНЕСЦЕНТНАЯ ЛАМПА, газоразрядный источник света, световой поток к-рого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает неск. %. Л. л. широко применяются для общего освещения, при этом их световая отдача и срок службы в неск. раз более, чем у ламп накаливания того же назначения. Наиболее распространённой разновидностью подобных источников является ртутная Л. л. (рис. 1). Она представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора. В торцы трубки введены вольфрамовые спиральные электроды; для повышения эмиссионной способности на электроды наносится оксидная суспензия, изготовляемая из карбонатов или перекисей щёлочноземельных металлов. В лампу вводят каплю ртути и нек-рое количество инертного газа (Ar, Ne и др.), к-рый способствует увеличению срока службы лампы и улучшению условий возбуждения атомов ртути. При подключении Л. л. к источнику переменного тока между электродами лампы возникает электрич. ток (десятые доли а), возбуждающий свечение атомов ртути. Давление ртутных паров в Л. л. зависит от темп-ры стенок лампы и составляет при нормальной рабочей темп-ре 40 °С примерно 0,13-1,3 н/м2 (10-2 - 10-3мм рт. ст.). Такое низкое давление обеспечивает интенсивное излучение разряда в ультрафиолетовой области спектра (преим. с длиной волны Л 184,9 и 253,7 нм), к-рое и возбуждает свечение люминофорного слоя ламп.

Рис. 1. Ртутная люминесцентная лампа: 1-трубка-колба; 2-катод; 3 - цоколь; 4- штырёк; 5- изолирующая прокладка.

Наиболее распространённым люминофором является галофосфат кальция, активированный Sb и Мn (см. Кристал-лофосфоры). Изменяя соотношение активаторов, можно получить люминофоры разных марок и изготавливать лампы разной цветности. В СССР макс, световую отдачу имеют лампы ЛБ (белого света) - 75-80 лм/вт. Световая отдача ламп ЛХБ (холодно-белого света) ок. 65 лм/вт. Для обеспечения наиболее правильной цветопередачи освещаемых объектов используют лампы ЛДЦ (см. Лампа дневного света). Лампы с диф-фузноотражающим слоем (рефлекторные лампы) имеют пониженный общий световой поток, но почти вдвое большую силу света в отражаемом покрытием направлении. Срок службы ламп превышает 10 тыс. ч. Мощности Л. л. колеблются от 4 до 200 вт; длина от 136 до 2440 мм, по конфигурации различают лампы: прямые, U-образные, W-образные, кольцевые, панельные, свечеобразные.

Широкое распространение получают Л. л. с амальгамами In, Cd и др. элементов. Более низкое давление паров ртути над амальгамой даёт возможность расширить температурный диапазон оптимальных световых отдач до 60 °С вместо 18-25 °С для чистой ртути.

При повышении темп-ры окружающей среды сверх допускаемой нормы (25 °С для чистой ртути и 60 °С для амальгам) возрастают темп-pa стенок и давление паров ртути, а световой поток снижается. Ещё более заметное уменьшение светового потока наблюдается при понижении темп-ры (рис. 2), а значит, и давления паров ртути. При этом резко ухудшается и зажигание ламп, что делает невозможным их использование при темп-рах ниже О °С без утепляющих приспособлений. В связи с этим представляют интерес безртутные Л. л. с разрядом низкого давления в инертных газах. В этом случае люминофор возбуждается излучением с X от 58,4 до 147 нм. Поскольку давление газа в безртутных Л. л. практически не зависит от окружающей темп-ры, неизменными остаются и их световые характеристики.

Световая отдача Л. л. повышается при увеличении размеров (длины) за счёт снижения доли анодно-катодных потерь в общем световом потоке. Для Л. л. характерны малая поверхностная яркость ламп и пульсация светового потока при работе ламп на переменном токе (стробоскопический эффект). Снижение пульсаций достигается равномерным включением ламп в три фазы питающей сети. Срок службы ламп ограничен дезактивацией и распылением катодов. Отрицательно сказываются на сроке службы колебания напряжения питающей сети и частые включения и выключения ламп. Световая отдача снижается в процессе горения.

Будучи газоразрядным прибором, Л. л. имеет падающую вольтамперную характеристику, что требует применения пуско-регулирующих аппаратов (ПРА) - индуктивных или ёмкостных. Для повышения термоэмиссии и обеспечения тем самым зажигания ламп катоды в пусковой период должны быть прогреты. Это достигается включением их в сеть последовательно с ПРА с помощью стартера (стартерные схемы) или с помощью трансформаторов накала (бесстартерные схемы).

Рис. 2. Зависимость светового потока ламп с жидкой ртутью от температуры стенок.

Л. л. широко применяются в качестве источников света: напр., ЛБ и ЛХБ - для общего освещения; ЛТБ (тепло-белого света) - для освещения помещений, богатых бело-розовыми тонами; ЛСР (синего света рефлекторные) - в электрофотографич. копировалъно-множительных аппаратах; лампы из увиолевого стекла, частично прозрачного для ультрафиолетового излучения,- для профилактич. облучения людей.

Выпуск Л. л. осуществляется на механизированных поточных линиях сборки произ