БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481шение длины окружности к диаметру лежит в пределах 3,1415926<Пи<3,1415927. Особенно замечательны работы китайцев по численному решению уравнений. Геометрич. задачи, приводящие к уравнениям третьей степени, впервые встречаются у астронома и математика Ван Сяо-туна (1-я пол. 7 в.). Изложение методов решения уравнений четвёртой и высших степеней былодано в работах математиков 13-14 вв. Цинь Цзю-шао, Ли Е, Ян Хуэя и Чжу Ши-цэе.

Индия. Расцвет инд. М. относится к 5-12 вв. (наиболее известны инд. математики Ариабхата, Брахмагупта, Бхаскара). Индийцам принадлежат две осн. заслуги. Первой из них является введение в широкое употребление совр. десятичной системы счисления и систематич. употребление нуля для обозначения отсутствия единиц данного разряда. Происхождение употреблявшихся в Индии цифр, называемых теперь "арабскими", не вполне выяснено. Второй, ещё более важной заслугой инд. математиков является создание алгебры, свободно оперирующей не только с дробями, но и с иррациональными и отрицательными числами. Однако обычно при истолковании решений задач отрицательные решения считаются невозможными. Вообще следует отметить, что в то время как дробные и иррациональные числа с самого момента своего возникновения связаны с измерением непрерывных величин, отрицательные числа возникают в основном из внутренних потребностей алгебры и лишь позднее (в полной мере в 17 в.) получают самостоятельное значение. В тригонометрии заслугой инд. математиков явилось введение линий синуса, косинуса, синус-верзуса.

Средняя Азия и Ближний Восток. Араб, завоевания и кратковременное объединение огромных территорий под властью араб.халифов привели к тому, что в течение 9-15вв. учёные Ср.Азии, Бл.Востока и Пиренейского п-ова пользовались араб, языком. Наука здесь развивается в мировых торговых городах, в обстановке широкого междунар. общения и гос. поддержки больших науч. начинаний. Блестящим завершением этой эпохи явилась в 15 в. деятельность Улугбека, к-рый при своём дворе и обсерватории в Самарканде собрал более ста учёных и организовал долго остававшиеся непревзойдёнными астрономии, наблюдения, вычисление математич. таблиц и т. п.

В зап.-европ. науке длительное время господствовало мнение, что роль -"арабской культуры" в области М. сводится в основном к сохранению и передаче математикам Зап. Европы математич. открытий древнего мира и Индии. (Так, сочинения греч. математиков впервые стали известны в Зап. Европе по араб. переводам.) В действительности вклад математиков, писавших на араб, языке, и в частности математиков, принадлежавших к народам современной советской Ср. Азии и Кавказа (хорезмийских, узбекских, таджикских, азербайджанских), в развитие науки значительно больше.

В 1-й пол. 9 в. Мухаммед бен Муса Хорезми впервые дал изложение алгебры как самостоят, науки. Термин "алгебра" производят от начала названия сочинения Хорезми "Аль-джебр", по к-рому европ. математики раннего средневековья познакомились с решением квадратных уравнений. Омар Хайям систематически изучил уравнения третьей степени, дал их классификацию, выяснил условия их разрешимости (в смысле существования положительных корней). Хайям в своём алгебраич. трактате говорит, что он много занимался поисками точного решения уравнений третьей степени. В этом направлении поиски среднеазиатских математиков не увенчались успехом, но им были хорошо известны как геометрические (при помощи конич. сечений), так и приближённые численные методы решения. Заимствовав от индийцев десятичную систему счисления с употреблением нуля, математики Ср. Азии и Бл. Востока применяли в больших науч. вычислениях по преимуществу шестидесятиричную систему (по-видимому, в связи с шестидесятиричным делением углов в астрономии).

В связи с астрономич. и геодезич. работами большое развитие получила тригонометрия. Аль-Баттани ввёл в употребление тригонометрич. функции синус, тангенс и котангенс, Абу-лъ-Вефа - все шесть тригонометрич. функций, он же выразил словесно алгебраич. зависимости между ними, вычислил таблицы синусов через 10' с точностью до 1/604 и таблицы тангенсов и установил теорему синусов для сферич. треугольников. Насирэддин Туей достиг известного завершения разработки сферич. тригонометрии, алъ-Каши дал систематич. изложение арифметики десятичных дробей, к-рые справедливо считал более доступными, чем шестидесятиричные. В связи с вопросами извлечения корней аль-Каши сформулировал словесно формулу бинома Ньютона, указал правило образования коэффициентов Сnm=Сn-1m+Сn-1m-1. В "Трактате об окружности"

(ок. 1427) аль-Каши, определяя периметры вписанного и описанного 3*228-угольников, нашёл я с семнадцатью десятичными знаками. В связи с построением обширных таблиц синусов аль-Каши дал весьма совершенный итерационный метод численного решения уравнений. Западная Европа до 16 в. 12-15 вв. являются для зап.-европ. М. по преимуществу периодом усвоения наследства древнего мира и Востока. Тем не менее уже в этот период, не приведший ещё к открытию особенно значит, новых математич. фактов, общий характер европ. математич. культуры отличается рядом существенных прогрессивных черт, обусловивших возможность стремит, развития М. в последующие века. Высокий уровень требований быстро богатеющей и политически независимой буржуазии итал, городов привёл к созданию и широкому распространению учебников, соединяющих практическое общее направление с большой обстоятельностью и научностью. Меньше чем через 100 лет после появления в 12 в. первых латинских переводов греч. и араб, математич. сочинений Леонардо Пизанский (Фибоначчи) выпускает в свет свои "Книгу об абаке" (1202) и "Практику геометрии" (1220), излагающие арифметику, коммерческую арифметику, алгебру и геометрию. Эти книги имели большой успех. К концу рассматриваемой эпохи (с изобретением книгопечатания) учебники получают ещё более широкое распространение. Основными центрами теоретич. научной мысли в это время становятся университеты. Прогресс алгебры как теоретич. дисциплины, а не только собрания практич. правил для решения задач, сказывается в ясном понимании природы иррациональных чисел как отношений несоизмеримых величин [англ, математик Т. Брадвардин (1-я пол. 14 в.) и Н. Орем (сер. 14 в.)] и особенно во введении дробных (Н. Орем), отрицательных и нулевых [франц. математик Н. Шюке (конец

15 в.)] показателей степеней. Здесь же возникают первые, предваряющие следующую эпоху идеи о бесконечно больших и бесконечно малых величинах. Широкий размах научных исследований этой эпохи нашёл отражение не только в многочисленных переводах и изданиях греч. и араб, авторов, но и в таких начинаниях, как составление обширных три-гонометрич. таблиц, вычисленных с точностью до седьмого знака Региомонтаном (И. Мюллером). Значительно совершенствуется математич. символика (см. Знаки математические). Развиваются научная критика и полемика. Поиски решения трудных задач, поощряемые обычаем публичных состязаний в их решении, приводят к первым доказательствам неразрешимости. Уже Леонардо Пизанский в соч. "Цветок" (около 1225), в котором собраны предложенные ему и блестяще решённые им задачи, доказал неразрешимость уравнения: х3+2х2+10x=20 не только в рациональных числах, но и при помощи простейших квадратичных иррациональностей вида
[1832-9.jpg]

Западная Европа в 16 в. Этот век был первым веком превосходства Зап. Европы над древним миром и Востоком. Так было в астрономии (открытие Н. Коперника) и в механике (к концу этого столетия уже появляются первые исследования Г. Галилея), так в целом обстоит дело и в М., несмотря на то, что в нек-рых направлениях европ. наука ещё отстаёт от достижений среднеазиатских математиков 15 в. и что в действительности большие новые идеи, определившие дальнейшее развитие новой европ. М., возникают лишь в следующем, 17 в. В 16 же веке казалось, что новая эра в М. начинается с открытием алгебраич. решения уравнений третьей (С. Ферро, ок. 1515, и позднее и независимо Н. Тарталъей, ок. 1530; об истории этих открытий см. Кардана формула) и четвёртой (Л. Феррари, 1545) степеней, к-рое считалось в течение столетий неосуществимым. Дж. Кардана исследовал уравнения третьей степени, открыв т. н. неприводимый случай, в к-ром действительные корни уравнения выражаются комплексно. Это заставило Кардано, хотя и очень неуверенно, признать пользу вычислений с комплексными числами. Дальнейшее развитие алгебра получила у Ф. Виета - основателя настоящего алгебраич. буквенного исчисления (1591) (до него буквами обозначались лишь неизвестные). Учение о перспективе, развивавшееся в геометрии ещё ранее 16 в., излагается нем. художником А. Дюрером (1525). С. Стевин разработал (1585) правила арифметич. действий с десятичными дробями.

Россия до 18 в. Математич. образование в России находилось в 9-13 вв. на уровне наиболее культурных стран Вост. и Зап. Европы. Затем оно было надолго задержано монг. нашествием. В 15-16 вв. в связи с укреплением Рус. гос-ва и экономич. ростом страны значительно выросли потребности общества в математич. знаниях. В конце 16 в. и особенно в 17 в. появились многочисл. рукописные руководства по арифметике, геометрии, в к-рых излагались довольно обширные сведения, необходимые для практич. деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).

В Др. Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на слав, алфавите (см. Славянские цифры). Славянская нумерация в русской математич. лит-ре встречается до нач. 18 в., но уже с конца 16 в. эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.

Наиболее древнее известное нам математич. произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифмстико-хронологич. расчётам, к-рые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математич. части к решению в целых числах неопределённых уравнений первой степени. Арифметич. рукописи конца 16-17 вв. содержат, помимо описания славянской и араб, нумерации, арифметич. операции с целыми положит, числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практич. использования общих правил в рукописях рассматривалось много примеров реального содержания и излагался т. н. дощаный счёт - прототип русских счётов. Подобным же образом была построена и первая арифметич. часть знаменитой "Арифметики" Л. Ф. Магницкого (1703). В геометрич. рукописях, в большинстве своём преследовавших также практич. цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.

3. Период создания математики переменных величин. С 17 в. начинается существенно новый период развития математики. "Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчислени е..." (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 573). Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрич. фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения (см. Переменные и постоянные величины). Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным предметом изучения. Поэтому на первый план выдвигается понятие функции, играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математич. анализа, вводящим в М. в явном виде идею бесконечного, к понятиям предела, производной, дифференциала и интеграла. Создаётся анализ бесконечно