БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481рациональных дробей при помощи их разложения на мнимые выражения говорит о "чудесном вмешательстве идеального мира" и т. п. Более реалистически настроенный Л. Эйлер не говорит о чудесах, но воспринимает законность операций с мнимыми числами и с расходящимися рядами как эмпирич. факт, подтверждаемый правильностью получаемых при помощи подобных преобразований следствий. Хотя работа по рациональному уяснению основ анализа бесконечно малых была начата, систематическое проведение логич. обоснования анализа было осуществлено лишь в 19 в.

Если виднейшие математики 17 в. очень часто были в то же время философами или физиками-экспериментаторами, то в 18 в. научная работа математика становится самостоятельной профессией. Математики 18 в.- это люди из разных кругов общества, рано выделившиеся своими математич. способностями, с быстро развивающейся академич. карьерой (Л. Эйлер, происходя из пасторской семьи в Базеле, в возрасте 20 лет был приглашён адъюнктом в Петерб. академию наук, 23 лет становится там же профессором, 39 лет - председателем физико-математич. класса Берлинской академии наук; Ж. Лагранж - сын французского чиновника, 19 лет - профессор в Турине, 30 лет - председатель физико-математич. класса Берлинской академии наук; П. Лаплас - сын франц. крестьянина, 22 лет - профессор военной школы в Париже, 36 лет - член Парижской академии наук). При этом, однако, математич. естествознание (механика, математич. физика) и технич. применения М. остаются в сфере деятельности математиков. Л. Эйлер занимается вопросами кораблестроения и оптики, Ж. Лагранж создаёт основы аналитич. механики, П. Лаплас, считавший себя в основном математиком, также является крупнейшим астрономом и физиком своего времени и т. д.

М. 18 в. обогатилась многими выдающимися результатами. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематич. науки. Ж. Лагранж дал (1769, опубл. в 1771) общее решение неопределённых уравнений второй степени. Л. Эйлер установил (1772, опубл. в 1783) закон взаимности для квадратичных вычетов. Он же привлёк (1737, 1748, 1749) для изучения простых чисел дзета-функцию, чем положил начало аналитич. теории чисел.

При помощи разложений в непрерывные дроби Л. Эйлер доказал (1737, опубл. в 1744) иррациональность е и ё2, а И. Ламберт (1766, опубл. в 1768) - иррациональность я. В алгебре Г. Крамер (1750) ввёл для решения систем линейных уравнений определители. Л. Эйлер рассматривал как эмпирически установленный факт существование у каждого алгебраич. уравнения корня вида

А + В на корень из -1. Постепенно укореняется убеждение, что вообще мнимые выражения (не только в алгебре, но и в анализе)_ всегда приводимы к виду А + В на корень из -1. Ж. Д'Аламбер доказал (1748), что модуль многочлена не может иметь минимума, отличного от нуля (т. н. лемма Д'Аламбера), считая это за доказательство существования корня у любого алгебраич. уравнения. Формулы А. Муавра и Л. Эйлера, связывающие показательную и тригонометрич. функции комплексных аргументов, привели к дальнейшему расширению применений комплексных чисел в анализе. И. Ньютон, Дж. Стирлинг, Л. Эйлер и П. Лаплас заложили основы конечных разностей исчисления. Б. Тейлор открыл (1715) свою формулу разложения произвольной функции в степенной ряд. У исследователей 18 в., особенно у Л. Эйлера, ряды становятся одним из самых мощных и гибких орудий анализа. С Ж. Д'Аламбера начинается серьёзное изучение условий сходимости рядов. Л. Эйлер, Ж. Лагранж и особенно А. Ле-жандр заложили основы исследования эллиптич. интегралов - первого вида неэлементарных функций, подвергнутого глубокому специальному изучению. Большое внимание уделялось дифференциальным уравнениям, в частности Л. Эйлер дал (1739, опубл. в 1743) первый метод решения линейного дифференциального уравнения любого порядка с постоянными коэффициентами, Ж. Д'Аламбер рассматривал системы дифференциальных уравнений, Ж. Лагранж и П. Лаплас развивали общую теорию линейных дифференциальных уравнений любого порядка. Л. Эйлер, Г. Монж и Ж. Лагранж заложили основы общей теории дифференциальных уравнений с частными производными первого порядка, а Л. Эйлер, Г. Монж и П. Лаплас - второго порядка. Специальный интерес представляет введение в анализ разложения функций в тригонометрич. ряды, т. к. в связи с этой задачей между Л. Эйлером, Д. Бернулли, Ж. Д'Аламбером, Г. Монжем и Ж. Лагранжем развернулась полемика по вопросу о понятии функции, подготовившая фундаментальные результаты 19 в. о соотношении между аналитич. выражением и произвольным заданием функции. Наконец, новым отделом анализа, возникшим в 18 в., является вариационное исчисление, созданное Л. Эйлером и Ж. Лагранжем. А. Муавр, Я. Бернулли, П. Лаплас на основе отд. достижений 17-18 вв. заложили начала вероятностей теории.

В области геометрии Л. Эйлер привёл к завершению систему элементарной аналитич. геометрии. В работах Л. Эйлера, А. Клеро, Г. Монжа и Ж. Менье были заложены основы дифференц. геометрии пространственных кривых и поверхностей. И. Ламберт развил теорию перспективы, а Г. Монж придал окончательную форму начертательной геометрии.

Из приведённого обзора видно, что М. 18 в., основываясь на идеях 17 в., по размаху работы далеко превзошла предыдущие века. Этот расцвет М. был связан по преимуществу с деятельностью академий; университеты играли меньшую роль. Отдалённость крупнейших математиков от университетского преподавания возмещалась той энергией, с к-рой все они, начиная с Л. Эйлера и Ж. Лагранжа, писали учебники и обширные, включающие отдельные исследования, трактаты.

III. СОВРЕМЕННАЯ МАТЕМАТИКА Все созданные в 17 и 18 вв. разделы математич. анализа продолжали с большой интенсивностью развиваться в 19 и 20 вв. Чрезвычайно расширился за это время и круг их применений к задачам, выдвигаемым естествознанием и техникой. Однако, помимо этого количественного роста, с последних лет 18 в. и в нач. 19 в. в развитии М. наблюдается и ряд существенно новых черт.

1. Расширение предмета математики Накопленный в 17 и 18 вв. огромный фактич. материал привёл к необходимости углублённого логич. анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрия, интерпретации комплексных чисел [датский землемер К. Вессель, 1799, и франц. математик Ж. Арган (Арганд), 1806], доказательство неразрешимости в радикалах общего алгебраич. уравнения пятой степени (Н. Абель, 1824), разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским (1826, опубл. в 1829-30) и Я. Больяй (1832) неевклидовой геометрии, работы К. Гаусса (1827) по внутренней геометрии поверхностей - типичные примеры наметившихся на рубеже 18 и 19 вв. новых тенденций в развитии М.

Связь М. с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, но также из внутренних потребностей самой М. Таково в основном было развитие теории функций комплексного переменного, занявшей в начале и сер. 19 в. центральное положение во всём математич. анализе.

Другим замечательным примером теории, возникшей в результате внутреннего развития самой М., явилась "воображаемая геометрия" Лобачевского (см. Лобачевского геометрия).

Можно привести ещё один пример того, как начавшийся в конце 18 в. и 1-й пол. 19 в. пересмотр с более общих точек зрения добытых ранее конкретных математич. фактов нашёл во 2-й пол. 19 в. и в 20 в. мощную поддержку в новых запросах естествознания. Теория групп ведёт своё начало с рассмотрения Ж. Лагранжем (1771) групп подстановок в связи с проблемой разрешимости в радикалах алгебраич. уравнений высших степеней. Э. Галуа (1830-32, опубл. в 1832, 1846) при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраич. уравнений любой степени. В сер. 19 в. А. Кэли дал общее "абстрактное" определение группы. С. Ли разработал, исходя из общих проблем геометрии, теорию непрерывных групп. И лишь после этого Е. С. Фёдоров (1890) и нем. учёный А. Шёнфлис (1891) установили, что теоретико-групповым закономерностям подчинено строение кристаллов; ещё позднее теория групп становится мощным средством исследования в квантовой физике.

В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного исчисления и тензорного исчисления. Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.

Таким образом, в результате как внутренних потребностей М., так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых М., чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, всё разнообразие форм пространств любого числа измерений и т. п. При таком широком понимании терминов "количественные отношения" и "пространственные формы" приведённое в начале статьи определение М. применимо и на новом, современном этапе её развития.

Существенная новизна начавшегося в 19 в. этапа развития М. состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, напр., введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие М. потребовало выработки приёмов сознательного и планомерного создания новых геометрических систем, новых "алгебр" с "некоммутативным" или даже "неассоциативным" умножением и т. д. по мере возникновения в них потребности. Так, вопрос о том, не следует ли, напр., ради анализа и синтеза того или иного типа релейно-контактных схем создать новую "алгебру" с новыми правилами действий, является не вызывающим особого удивления делом повседневной научно-технич. практики. Но трудно переоценить важность той перестройки всего склада математич. мышления, к-рая для этого должна была произойти в течение 19 в. С этой, идейной стороны наиболее значительным среди открытий нач. 19 в. явилось открытие неевклидовой геометрии Лобачевского. Именно на примере этой геометрии была преодолена вера в незыблемость освящённых тысячелетним развитием М. аксиом, была понята возможность создания существенно новых математич. теорий путём правильно выполненной абстракции от налагавшихся ранее ограничений, не имеющих внутренней логич. необходимости, и, наконец, было обнаружено, что подобная абстрактная теория может получить со временем всё более широкие, вполне конкретные применения.

Чрезвычайное расширение предмета М. привлекло в 19 в. усиленное внимание к вопросам её "обоснования", т. е. критич. пересмотру её исходных положений (аксиом), построению строгой системы определений и доказательств, а также критич. рассмотрению логич. приёмов, употребляемых при этих доказательствах. Работы по строгому обоснованию тех или иных отделов М. справедливо занимают значительное место в М. 19 и 20 вв. В применении к основам анализа (теория действительных чисел, теория пределов и строгое обоснование всех приёмов дифференциального и интегрального исчисления) результаты этой работы с большей или меньшей полнотой излагаются в настоящее время в большинстве учебников (даже чисто практич.характера). Однако до последнего времени встречаются случаи, когда строгое обоснование возникшей из практич. потребностей математич. теории запаздывает. Так в течение долгого времени уже на рубеже 19 и 20 вв. было с операционным исчислением, получившим весьма широкие применения в механике и электротехнике. Лишь с большим запозданием было построено логически безупречное изложение математич. теории вероятностей. И в настоящее время ещё отсутствует строгое обоснование многих математич. методов, широко применяемых в современной теоретич. физике, где много ценных результатов получается при помощи "незаконных" ма