БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481классы и др. совокупности картографич. проекций. Для конкретного производственного задания оттуда может быть взята нужная проекция (или изыскана новая).

Одной из центральных проблем М. к. является задача построения наивыгоднейших картографич. проекций, т. е. проекций, в к-рых искажения в к.-л. смысле сведены к минимуму. Она полностью ещё не решена даже для хорошо известных классов проекций, хотя частными случаями этой задачи занимались многие известные учёные (Л. Эйлер, К. Гаусс, П. Л. Чебышев и др.). Проблема ставится двояко: для заданной области изыскивают проекции с минимумом искажений либо из всего мыслимого множества проекций (идеальные проекции), либо из определённого класса (наилучшие проекции класса). В обоих случаях задача с математич. точки зрения обращается в проблему приближения функций двух переменных. Но в последней также существуют различные постановки: обращаясь, напр., к теории наилучших приближений, говорят о наивыгоднейших проекциях минимаксного типа, а пользуясь теорией квадратических приближений, исследуют наивыгоднейшие проекции вариационного типа. Общая проблема построения наивыгоднейших картографич. проекций приводит к ряду новых экстремальных задач на условный минимакс и др. До конца исследован лишь случай наилучших конформных проекций. Согласно теореме Чебышева - Граве, наилучшей конформной проекцией (чебышевской) для данной области является та, крайняя изокола в к-рой совпадает с контуром изображаемой территории. В чебышевских проекциях искажения площадей наименее уклоняются от нуля. Как следствие, в них наименее уклоняются от нуля также модули логарифмов масштабов длин; отношение наибольшего масштаба к наименьшему минимально; минимальна также наибольшая кривизна изображений геодезич. линий; наконец, среднее квадратическое значение логарифмов масштаба длин также минимально. Такое сочетание различных положительных свойств у чебышевских проекций характерно для класса конформных проекций как наиболее простого (но и важного для практики) среди всех др. классов. Примером чебышевской проекции является стереографич. проекция, к-рая при изображении на плоскости сферического сегмента и при специальном выборе произвольной постоянной удовлетворяет условиям теоремы. Методика построения чебышевских проекций детально разработана и для произвольных территорий. Теорема Чебышева - Граве справедлива для ряда нек-рых др. классов проекций, неконформных, но эллиптич. типа.

Лит.: Соловьёв М. Д., Математическая картография, М., 1969; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968; его же, О современных задачах математической картографии, "Тр. Новосибирского ин-та инженеров геодезии, аэрофотосъемки и картографии", 1967, т. 20; К а в р ай с кий В. В., Современные задачи математической картографии. Тезисы доклада на шестой научной сессии ЛГУ, Л., 1949; Гинзбург Г. А., О задачах математической картографии в СССР в области мелкомасштабных карт, "Геодезия и картография", 1958, N° 12; Павлов А. А., Математическая картография, в сб.: Итоги науки и техники. Картография, т. 5, М., 1972, с. 53-66. Г.А.Мещеряков.


МАТЕМАТИЧЕСКАЯ ЛИНГВИСТИКА, математическая дисциплина, разрабатывающая формальный аппарат для описания строения естественных и нек-рых искусственных языков. Возникла в 50-х гг. 20 в. в связи с назревшей в языкознании потребностью уточнения его осн. понятий. В М. л. используются по преимуществу идеи и методы алгебры, .алгоритмов теории и автоматов теории. Не являясь частью лингвистики, М. л. развивается в тесном взаимодействии с ней. М. л. называют иногда лингвистич. исследования, в к-рых применяется к.-л. математич. аппарат.

Математич. описание языка основано на восходящем к Ф. де Соссюру представлении о языке как механизме, функционирование к-рого проявляется в речевой деятельности его носителей; её результатом являются «правильные тексты» - последовательности речевых единиц, подчиняющиеся определённым закономерностям, мн. из к-рых допускают математич. описание. Изучение способов математич. описания правильных текстов (в первую очередь предложений) составляет содержание одного из разделов М. л. - теории способов описания синтаксической структу-р ы. Для описания строения (синтак-сич. структуры) предложения можно либо выделить в нём «составляющие» -группы слов, функционирующие как цельные синтаксические единицы, либо указать для каждого слова те слова, к-рые от него непосредственно зависят (если такие есть). Так, в предложении «Лошади кушают овёс» при описании по 1-му способу составляющими будут: всё предложение /, каждое отд. слово и словосочетание С = «кушают овёс» (рис. 1; стрелки означают «непосредственное вложение»); описание по 2-му способу даёт схему, показанную на рис. 2

. Математические объекты, возникающие при таком описании структуры предложения, наз. деревом составляющих (1-й способ) и деревом синтаксического подчинения (2-й способ).

Другой раздел М. л., занимающий в ней центр, место,- теория формальных грамматик, возникшая гл. обр. благодаря работам Н. Хамского. Она изучает способы описания закономерностей, к-рые характеризуют уже не отд. текст, а всю совокупность правильных текстов того или иного языка. Эти закономерности описываются путём построения «формальной грамматики» -абстрактного «механизма», позволяющего с помощью единообразной процедуры получать правильные тексты данного языка вместе с описаниями их структуры. Наиболее широко используемый тип формальной грамматики — т. н. порождающая грамматика, или грамматика Хомского,- упорядоченная система Г = , где: V и W — непересекающиеся конечные множества; I — элемент W; R — конеч-

ное множество правил вида y -> ф, где y и ф - цепочки (конечные последовательности) элементов V и W. Если y -> ф -правило грамматики Г и w1, w2,- цепочки из элементов V и W, то говорят, что цепочка w1 ф w2 непосредственно выводима в Г из w1 y w2. Если E0, E1,...,En - цепочки и для каждого i = 1, ..., п цепочка E1 непосредственно выводима из Ei-1, то говорят, что En выводима из E0 в Г. Множество цепочек из элементов V, выводимых в Г из 1, наз. языком, порождаемым грамматикой Г. Если все правила грамматики Г имеют вид А -> ф, где А — элемент W, Г называется бесконтекстной, или контекстно-свободной. В лингвистич. интерпретации элементы V чаще всего представляют собой слова, элементы W — символы грамматич. категорий, I — символ категории «предложение». В бесконтекстной грамматике вывод предложения даёт для него дерево составляющих, в к-ром каждая составляющая состоит из слов, «происходящих» от одного элемента W, так что для каждой составляющей указывается её грамматич. категория. Так, если грамматика имеет в числе прочих правила I ->Sx, у, им Vy,

Vy -> VtySx, у' вин, S муж, ед, вин -> овёс, Sжен, мн, им-> лошади, Vtмн -> кушают, где Vy означает категорию «группа глагола в числе у», Vty - «переходный глагол в числе у», Sx,y,z - "существительное рода х в числе у и падеже Z" , то приведённое выше предложение имеет вывод, показанный на рис. 3, где стрелки идут из левых частей применяемых правил к элементам соответствующих правых частей.
Формальные грамматики используются для описания не только естественных, но и искусственных языков, в особенности языков программирования.

М. л. изучает также аналитические модели языка, в к-рых на основе тех или иных данных о речи, считающихся известными (напр., множества правильных предложений), производятся формальные построения, дающие нек-рые сведения о структуре языка. Приложение методов М. л. к конкретным языкам относится к области лингвистики (см. Языкознание).

Лит.: Хомский Н., Синтаксические структуры, в сб.: Новое в лингвистике, в. 2, М., 1962; Гладкий А. В.. Мельчук И. А., Элементы математической лингвистики, М., 1969; Маркус С., Теоретико-множественные модели языков, пер. с англ., М., 1970; Гладкий А, В., Формальные грамматики и языки, М., 1973. А. В. Гладкий.

МАТЕМАТИЧЕСКАЯ ЛОГИКА, логи ка, развиваемая математич. методом. Характерным для М. л. является использование формальных языков с точным синтаксисом и чёткой семантикой, однозначно определяющими понимание формул. Потребность в такой логике выявилась в нач. 20 в. в связи с интенсивной разработкой оснований математики, возникновением множеств теории, где были открыты антиномии (см. Парадокс), уточнением понятия алгоритма и др. глубокими и принципиальными вопросами математической науки. Однако значение М. л. для науки в целом не исчерпывается её математич. приложениями, поскольку хорошо рассуждать и доказывать приходится во всех науках. Вот почему М. л. с полным правом может быть охарактеризована как логика на совр. этапе. См. ст. Логика (раздел Предмет и метод современной логики) и лит. при этой статье. А.А.Марков.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, приближённое описание какого-либо класса явлений внеш. мира, выраженное с помощью математич. символики. М. м.- мощный метод познания внеш. мира, а также прогнозирования и управления. Анализ М. м. позволяет проникнуть в сущность изучаемых явлений. Процесс математич. моделирования, т. е. изучения явления с помощью М. м., можно подразделить на 4 этапа.

Первый этап - формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математич. терминах сформулированных качеств, представлений о связях между объектами модели.

Второй этап - исследование математич. задач, к к-рым приводят М. м. Основным вопросом здесь является решение прямой задачи, т. е. получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений. На этом этапе важную роль приобретают математич. аппарат, необходимый для анализа М. м., и вычислит, техника - мощное средство для получения количеств, выходной информации как результата решения сложных математич. задач. Часто математич. задачи, возникающие на основе М. м. различных явлений, бывают одинаковыми (напр., основная задача линейного программирования отражает ситуации различной природы). Это даёт основание рассматривать такие типичные математич. задачи как самостоят, объект, абстрагируясь от изучаемых явлений.

Третий этап - выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики, т. е. выяснение вопроса о том, согласуются ли результаты наблюдений стеоретич. следствиями модели в пределах точности наблюдений. Если модель была вполне определена - все параметры её были заданы,- то определение уклонений теоретич. следствий от наблюдений даёт решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели нек-рые её характеристики остаются не определёнными. Задачи, в к-рых определяются характеристики модели (параметрические, функциональные) таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений изучаемых явлений, наз. обратными задачами. Если М. м. такова, что ни при каком выборе характеристик этим условиям нельзя удовлетворить, то модель непригодна для исследования рассматриваемых явлений. Применение критерия практики к оценке М. м. позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам непосредственно явлений макро- и микромира.

Четвёртый этап - последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели. В процессе развития науки и техники данные об изучаемых явлениях всё более и более уточняются и наступает момент, когда выводы, получаемые на основании существующей М. м., не соответствуют нашим знаниям о явлении. Т. о., возникает необходимость построения новой, более совершенной М. м.

Типичным примером, иллюстрирующим характерные этапы в построении М. м., является модель Солнечной системы. Наблюдения звёздного неба начались в глубокой древности. Первичный анализ этих наблюдений позволил выделить планеты из всего многообразия небесных светил