БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481ми с двумя входами. Примером совместного распределения двух качеств, признаков может служить таблица 2а. В общем случае, когда по признаку А материал разбит на классы A1, А2, ..., Аr, а по признаку В - на классы B1, B2, -.., Bsтаблица состоит из численностей nijобъектов, принадлежащих одновременно классам Ai и Bj. Суммируя их по формулам
[1533-2.jpg]
получают численности самих классов Aiи Bj; очевидно, что
[1533-3.jpg]
где п - численность всей изучаемой совокупности. В зависимости от целей дальнейшего исследования вычисляют те или иные из относительных частот
[1533-4.jpg]

Напр., при изучении влияния вдыхания сыворотки на заболевание гриппом по табл. 2а естественно вычислить относительные частоты, данные в табл. 26.



Табл. 2 а. - Распределение заболевших и не заболевших гриппом среди работников Центрального универмага в Москве, вдыхавших и не вдыхавших противогриппозную сыворотку (1939)



Не заболевшие

Заболевшие

Всего
Не вдыхавшие

1675

150

1825
Вдыхавшие

497

4

501
Всего

2172

154

2326

Табл. 2б. - Относительные частоты (соответствующие данным табл. 2а)



Не заболевшие

Заболевшие

Всего
Не вдыхавшие

0,918

0,082

1,000
Вдыхавшие

0,992

0,008

1,000

Пример таблицы для совместного распределения двух количеств, признаков см. в статье Корреляция. Табл. 1а служит примером смешанного случая: материал группируется по одному качеств, признаку (принадлежность к основной выборке, произведённой для определения среднего уровня производств, процесса, и к трём выборкам, произведённым в различные моменты времени для проверки сохранения этого нормального среднего уровня) и по одному количеств, признаку (диаметр деталей).

Простейшими сводными характеристиками распределения одного количеств, признака являются среднее
[1533-5.jpg]
и среднее квадратичное отклонение
[1533-6.jpg]
При вычислении х, S2 и D по группированным данным пользуются формулами
[1533-7.jpg]
где т - число интервалов группировки, ак - их середины (в случае табл. 1а - 13,07; 13,12; 13,17; 13,22 и т. д.). Если материал сгруппирован по слишком крупным интервалам, то такой подсчёт даёт слишком грубые результаты. Иногда в таких случаях полезно прибегать к специальным поправкам на группировку. Однако эти поправки имеет смысл вводить лишь при условии выполнения определённых вероятностных предположений.

О совместных распределениях двух и большего числа признаков см. Корреляция, Корреляционный анализ, Регрессия, Регрессионный анализ.

Связь статистических распределений с вероятностными. Оценка параметров. Проверка вероятностных гипотез. Выше были изложены лишь нек-рые избранные простейшие приёмы статистич. описания, представляющего собой довольно обширную дисциплину с хорошо разработанной системой понятий и техникой вычислений. Приёмы статистич. описания интересны, однако не сами по себе, а в качестве средства для получения из статистич. материала выводов о закономерностях, к-рым подчиняются изучаемые явления, и о причинах, приводящих в каждом отд. случае к тем или иным наблюдённым статистич. распределениям.

Напр., данные, приведённые в табл. 2а, естественно связать с такой теоретич. схемой. Заболевание гриппом каждого отд. работника универмага следует считать случайным событием, т. к. общие условия работы и жизни обследованных работников универмага могут определять не сам факт заболевания такого-то и такого-то работника, а лишь нек-рую вероятность заболевания. Вероятности заболевания для вдыхавших сыворотку (p1) и для не вдыхавших (р0), судя по статистич. данным, различны: эти данные дают основания предполагать, что p1существенно меньше ро. Перед М. с. возникает задача: по наблюдённым частотам h1 = 4/501 ~ 0,008 и ho = 150/1825 ~ 0,082 оценить вероятности р1и р0 и проверить, достаточен ли статистич. материал для того, чтобы считать установленным, что p1 < рo(т. е. что вдыхание сыворотки действительно уменьшает вероятность заболевания). Утвердительный ответ на поставленный вопрос в случае данных табл. 2а достаточно убедителен и без тонких средств М. с. Но в более сомнительных случаях необходимо прибегать к разработанным М. с. специальным критериям.

Данные первого столбца табл. 1а собраны с целью установления точности изготовления деталей, расчётный диаметр к-рых равен 13,40 мм, при нормальном ходе производства. Простейшим допущением, к-рое может быть в этом случае обосновано нек-рыми теоретич. соображениями, является предположение, что диаметры отд. деталей можно рассматривать как случайные величины X, подчинённые нормальному распределению вероятностей
[1533-8.jpg]
Если это допущение верно, то параметры а и б2-среднее и дисперсию вероятностного распределения - можно с достаточной точностью оценить по соответствующим характеристикам статистического распределения (т. к. число наблюдений п = 200 достаточно велико). В качестве оценки для теоретич. дисперсии б2 предпочитают не статистич. дисперсию D2 = S2/n, а несмещённую оценку
[1533-9.jpg]

Для теоретич. среднего квадратичного отклонения не существует общего (пригодного при любом распределении вероятностей) выражения несмещённой оценки. В качестве оценки (вообще говоря, смещённой) для а чаще всего употребляют s. Точность оценок х и s для а и а указывается соответствующими дисперсиями, к-рые в случае нормального распределения (1) имеют вид
[1533-10.jpg]
где знак ~ обозначает приближённое равенство при больших п. Таким образом, уславливаясь прибавлять к оценкам со знаком ± их среднее квадратичное отклонение, имеем при больших п в предположении нормального распределения (1):
[1533-11.jpg]
Объём выборки п = 200 достаточен для законности пользования этими формулами теории больших выборок.

Дальнейшие сведения об оценке параметров теоретич. распределений вероятностей см. в статьях Статистические оценки, Доверительные границы. О способах, при помощи к-рых по данным первого столбца табл. 1а можно было бы проверить исходные гипотезы нормальности распределения и независимости наблюдений, см. в статьях Распределения, Непараметрические методы, Статистическая проверка гипотез.

При рассмотрении данных следующих столбцов табл. 1а, каждый из к-рых составлен на основе 10 измерений, употребление формул теории больших выборок, может служить только для первой ориентировки. В качестве приближённых оценок параметров а и 0 по-прежнему употребляются величины х и s, но для оценки точности и надёжности таких оценок необходимо применять теорию малых выборок. При сравнении по правилам М. с. выписанных в последних строках табл. 1а значений х и 5 для трёх выборок с нормальными значениями а и а, оценёнными по первому столбцу таблицы, можно сделать следующие выводы: первая выборка не даёт оснований предполагать существенного изменения хода производственного процесса, вторая выборка даёт основание к заключению об уменьшении среднего диаметра а, третья выборка - к заключению об увеличении дисперсии.

Все основанные на теории вероятностей правила статистич. оценки параметров и проверки гипотез действуют лишь с определённым значимости уровнем со < 1, т. е. могут приводить к ошибочным результатам с вероятностью а = 1 - со. Напр., если в предположении нормального распределения и известной теоретичдисперсии б2 производить оценку а по х по правилу
[1533-12.jpg]

то вероятность ошибки будет равна а, связанному с k соотношением (см. табл. 3);
[1533-13.jpg]
Вопрос о рациональном выборе уровня значимости в данных конкретных условиях (напр., при разработке правил статистич. контроля массовой продукции) является весьма существенным. При этом желанию применять правила лишь с высоким (близким к единице) уровнем значимости противостоит то обстоятельство, что при ограниченном числе наблюдений такие правила позволяют сделать лишь очень бедные выводы (не дают возможности установить неравенство вероятностей даже при заметном неравенстве частот и т. д.).

Табл. 3. - Зависимость аи w = 1-а о т k.

k

1,96

2,58

3,00

3,29
а

0,050

0,010

0,003

0,001
со

0,950

0,990

0,997

0,999

Выборочный метод. В предыдущем разделе результаты наблюдений, используемых для оценки распределения вероятностей или его параметров, подразумевались (хотя это и не оговаривалось) независимыми (см. Вероятностей теория и особенно Независимость). Хорошо изученным примером использования зависимых наблюдений может служить оценка статистич. распределения или его параметров в "генеральной совокупности" из N объектов по произведённой из неё "выборке", содержащей п < N объектов.

Терминологическое замечание. Часто совокупность п наблюдений, сделанных для оценки распределения вероятностей, также наз. выборкой. Этим объясняется, напр., происхождение употреблённого выше термина "теория малых выборок". Эта терминология связана с тем, что часто распределение вероятностей представляют себе в виде статистич. распределения в воображаемой бесконечной "генеральной совокупности" и условно считают, что наблюдаемые п объектов "выбираются" из этой совокупности. Эти представления не имеют отчётливого содержания. В собственном смысле слова выборочный метод всегда предполагает исходную конечную генеральную совокупность.

Примером применения выборочного метода может служить следующий. Пусть в партии из N изделий имеется L дефектных. Из партии отбирается случайным образом п < N изделий (напр., п = 100 при N = 10 000). Вероятность того, что число lдефектных изделий в выборке будет равно т, равна Р{/ = т} =
[1533-14.jpg]
Таким образом, l и соответствующая относительная частота h = l/п оказываются случайными величинами, распределение к-рых зависит от параметра L или, что то же самое, от параметра Н = L/N. Задача оценки относительной частоты Н по выборочной относительной частоте h очень похожа на задачу оценки вероятности р по относительной частоте h при п независимых испытаниях. При больших п с вероятностью, близкой к единице, в задаче об оценке вероятности имеет место приближённое равенство р ~ h, а в задаче об оценке относительной частоты - приближённое равенство H~h. Однако в задаче об оценке Н формулы сложнее, а отклонения и от Н в среднем несколько меньше, чем отклонения h от р в задаче об оценке вероятности (при том же п). Таким образом, оценка доли Н дефектных изделий в партии по доле h дефектных изделий в выборке при данном объёме выборки п производится всегда (при любом N) несколько точнее, чем оценка вероятности р по относительной частоте h при независимых испытаниях. Когда N/n -> стремится к бесконечности, формулы задачи о выборке переходят асимптотически в формулы задачи об оценке вероятности р. См. также Выборочный метод.

Дальнейшие задачи математической статистики. Упоминавшиеся выше способы оценки параметров и проверки гипотез основаны на предположении, что число наблюдений, необходимых для достижения заданной точности выводов, определяют заранее (до проведения испытаний). Однако часто априорное определение числа наблюдений нецелесообразно, т. к., не фиксируя число опытов заранее, а определяя его в ходе эксперимента, можно уменьшить его математич. ожидание. Сначала это обстоятельство было подмечено на примере выбора одной из двух гипотез по последовательности независимых испытаний. Соответствующая процедура (впервые предложенная в связи с задачами приёмочного статистического контроля) состоит в следующем: на каждом шаге по результатам уже проведённых наблюдений решают а) провести ли следующее испытание, или о) прекратить испытания и принять первую гипотезу, или в) прекратить испытания и принять вторую гипотезу. При надлежащем подборе количеств, характеристик подобной процедуры можно добиться (при то