БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

116520781228830549481пные водоросли: дл. до 45 м. Состоят из гибкого разветвлённого ствола с ризоидами и листообразных пластин с воздушными пузырями, поддерживающими ветви и пластины у поверхности. 3 вида. Распространены в умеренных водах Юж. и Сев. (только у берегов Калифорнии) полушарий. Используются для получения гл. обр. солей альгиновых кислот.

МАКРОЭВОЛЮЦИЯ, совокупность процессов эволюции живых форм, протекающих на надвидовом уровне, т. е. после установления практически полной межвидовой изоляции и прекращения нивелировки достигнутых различий путём скрещиваний. В 1-й пол. 20 в. термин "М." употреблялся нек-рыми биологами (нем.-Р. Вольтерек, 1920, сов. - Ю. А. Филипченко, 1927, нем.- Р. Гольдшмидт, 1940) в связи с принимаемыми ими двумя типами наследственной изменчивости - внутривидовой (основанной на менделирующих, т. е. подчиняющихся Менделя законам, мутациях) и особой (неменделирующей) изменчивости, определявшей, по мнению этих учёных, возникновение надвидовых таксонов. Большинство биологов, изучающих механизм эволюции, считает, что основу образования видов, родов, семейств и т. д. составляют одни и те же микроэволюционные процессы; в связи с этим противопоставление М. и микроэволюции не оправдано.

Лит.: Тимофее в-Р есовский Н. В., Воронцов Н. Н., Яблоков А. В., Краткий очерк теории эволюции, М., 1969; Philiptschenko Y., Yariabilitat und Variation, В., 1927; Goldschmidt R., The material basis of evolution, New Haven, 1940. Н. В. Тимофеев-Ресовский.

МАКРОЭРГИЧЕСКИЕ СОЕДИНЕНИЯ (от макро... и греч. ergon - деятельность, работа), высокоэргические, высокоэнергетические соединения, природные соединения, содержащие богатые энергией, или м а-кро эргические, связи; присутствуют во всех живых клетках, участвуя в процессах накопления и превращения энергии. К М. с. относятся гл. обр. аденозинтрифосфорная к-та (АТФ) и вещества, способные образовывать АТФ в ферментативных реакциях переноса преим. фосфатных групп. Все известные

М. с. содержат фосфорильную (-РО32- или ацильную
[1517-3.jpg]
группу и описываются формулой X- Y, где X- атом N, О, S или С, a Y-атом Р или С. Реакционная способность М. с. связана с повышенной электрофильностью (сродством к электрону) атома Y, что обусловливает, в частности, высокую свободную энергию гидролиза М. с., равную 25,1- 58,6 кдж/молъ (6-14 ккал/моль) (см. Биоэнергетика). К М. с. относятся также нуклеозидтри- (или ди)-фосфорные к-ты, пирофосфорная и полифосфорная к-ты, креатинфосфорная, фосфопировиноградная, дифосфоглицериновая к-ты, ацетил- и сукцинилкоферменты А, аминоацильные производные адениловой и ри-бонуклеиповых к-т и др. М. с. связаны между собой ферментативными реакциями переноса фосфорильных групп, причём промежуточным продуктом обычно служит АТФ - кофермент мн. ферментативных реакций. В целом биологич. значение АТФ и связанных с ней М. с. обусловлено их центр, положением на пересечении путей обмена веществ и энергии: они обеспечивают осуществление различных видов работы, играют ответственную роль в фотосинтезе, биолюминесценции, в биосинтезе белков, жиров, углеводов, нуклеиновых к-т и др. природных соединений.

От М. с. следует отличать фосфорильные, ацильные и др. соединения, не имеющие макроэргич. связей и потому не способные образовывать АТФ в реакциях переноса фосфорильных и ацильных групп: нуклеозидмонофосфорные к-ты, нуклеиновые к-ты, фосфосахара, фосфолипиды и др. Однако окисление нек-рых из этих соединений может вести к образованию М. с. (см. Окислительное фосфорилирование). См. также Аденозинфосфорные кислоты и Биоэнергетика.

Лит.: Скулачев В. П., Аккумуляция энергии в клетке, М., 1969. В. П. Скулачев.

МАКРУРУСЫ, семейство рыб; то же, что длиннохвосты.

МАКС БАДЕНСКИЙ (Max von Baden) (10.7.1867, Баден-Баден, - 6.11.1929, Констанц), наследник баденского престола, рейхсканцлер Германии в 1918. В последний период 1-й мировой войны 1914-18, оставаясь на империалистич. позициях, высказывался за ограничение захватнических целей Германии и проведение частичных реформ, чтобы предотвратить революцию. В условиях воен. поражения Германии М. Б. 3 окт. 1918 был поставлен во главе псевдолиберального пр-ва, гл. целью к-рого было спасение монархии. Пр-во М. Б. и кайзеровский режим в целом были сметены Ноябрьской революцией 1918.

Соч.: Erinnerungen und Dokumente, Stuttg., 1968.

МАКСАКОВА Мария Петровна [р. 26.3 (8.4).1902, Астрахань], русская советская певица (меццо-сопрано), нар. арт. СССР (1971). С 1921 ученица М. К. Максакова. В 1923-53 солистка Большого театра СССР (в 1925-27 - Ленингр. театра оперы и балета). Голос М. высокий, гибкий, тёплого лирич. тембра; она обладала большим драм, талантом, ярким темпераментом. Среди лучших партий - Кармен ("Кармен" Визе), Марина Мнишек, Марфа ("Борис Годунов", "Хованщина" Мусоргского; Гос. пр. СССР,

1949, 1951). Выступала как концертная певица. Гос. пр. СССР (1946). Ведёт педагогич. работу. С 1935 гастролировала за рубежом. Награждена 2 орденами.

С о ч.: Путь к искусству, "Советская музыка", 1962, Ма 5.

Лит.: Львов М., М. П. Максакова, [2 изд.], М., 1953; Чудновский М., Мария Максакова, "Музыкальная жизнь", 1968, № 9.

МАКСАТИХА, посёлок гор. типа, центр Максатихинского р-на Калининской обл. РСФСР. Расположен на р. Молога (басе. Волги), в 120км к С. от Калинина. Ж.-д. станция на линии Бологое - Сонково. Деревообр. комбинат, ткацкая ф-ка, леспромхоз.

МАКСВЕЛЛ (Maxwell)Джеймс Клерк (Clerk) (13.6.1831, Эдинбург,- 5.11.1879, Кембридж), английский физик, создатель классической электродинамики, один из основателей статистической физики. Чл. Лондонского королевского об-ва (1860). Сын шотландского дворянина из знатного рода Клерков. Учился в Эдинбургском (1847-50) и Кембриджском (1850-54) ун-тах. Проф. Маришал-колледжа в Абердине (1856-60), затем Лондонского ун-та (1860-65). С 1871 проф. Кембриджского ун-та, где М. основал первую в Великобритании специально оборудованную физич. лабораторию - Кавендишскую лабораторию, директором к-рой он был с 1871.

Науч. деятельность М. охватывает проблемы электромагнетизма, кинетич. теории газов, оптики, теории упругости и мн. др. Свою первую работу "О черчении овалов и об овалах со многими фокусами" М. выполнил, когда ему ещё не было 15 лет (1846, опубл. 1851). Одними из первых его исследований были работы по физиологии и физике цветного зрения и колориметрии (1852-72, см. Цветовые измерения). В 1861 М. впервые демонстрировал цветное изображение, полученное от одновременного проецирования на экран красного, зелёного и синего диапозитивов, доказав этим справедливость трёхкомпонентной теории цветного зрения и одновременно наметив пути создания цветной фотографии. Он создал один из первых приборов для количественного измерения цвета, получившего назв. диска М. (см. Колориметр трёхцветный). В 1857-59 М. провёл теоретич. исследование устойчивости колец Сатурна и показал, что кольца Сатурна могут быть устойчивыми лишь в том случае, если они состоят из не связанных между собой твёрдых частиц.

В исследованиях по электричеству и магнетизму (ст. "О фарадеевых силовых линиях", 1855-56; "О физических силовых линиях", 1861-62; "Динамическая теория электромагнитного поля", 1864; двухтомный фундаментальный "Трактат об электричестве и магнетизме", 1873) М. математически развил воззрения М. Фарадея на роль промежуточной среды в электрич. и магнитных взаимодействиях. Он попытался (вслед за Фарадеем) истолковать эту среду как всепроникающий мировой эфир, однако эти попытки не были успешны. Дальнейшее развитие физики показало, что носителем электромагнитных взаимодействий является электромагнитное поле, теорию к-рого (в классич. физике) М. и создал. В этой теории М. обобщил все известные к тому времени факты макроскопич. электродинамики и впервые ввёл представление о токе смещения, порождающем магнитное поле подобно обычному току (току проводимости, перемещающимся электрич. зарядам). М. выразил законы электромагнитного поля в виде системы 4 дифференциальных ур-ний в частных производных (см. Максвелла уравнения). Общий и исчерпывающий характер этих уравнений проявился в том, что их анализ позволил предсказать мн. неизвестные до того явления и закономерности. Так, из них следовало существование электромагнитных волн, впоследствии экспериментально открытых Г. Герцем. Исследуя эти ур-ния, М. пришёл к выводу об электромагнитной природе света (1865) и показал, что скорость любых др. электромагнитных волн в вакууме равна скорости света. Он измерил (с большей точностью, чем В. Вебер и Ф. Колърауш в 1856) отношение электростатич. единицы заряда к электромагнитной и подтвердил его равенство скорости света. Из теории М. вытекало, что электромагнитные волны производят давление. Давление света было экспериментально установлено в 1899 П. Н. Лебедевым.

М. П. Максакова.

Дж. К. Максвелл.

Теория электромагнетизма М. получила полное опытное подтверждение и стала общепризнанной классич. основой совр. физики. Роль этой теории ярко охарактеризовал А. Эйнштейн: "...тут произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу... После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона" (Собр. науч. трудов, т. 4, М., 1967, с. 138).

В исследованиях по молекулярно-кинетич. теории газов (ст. "Пояснения к динамической теории газов", 1860, и "Динамическая теория газов", 1866) М. впервые решил статистич. задачу о распределении молекул идеального газа по скоростям (см. Максвелла распределение). М. рассчитал зависимость вязкости газа от скорости и длины свободного пробега молекул (I860), вычислив абсолютную величину последней, вывел ряд важных соотношений термодинамики (1860). Экспериментально измерил коэфф. вязкости сухого воздуха (1866). В 1873-74 М. открыл явление двойного лучепреломления в потоке (эффект М.).

М. был крупным популяризатором. Он написал ряд статей для Британской энциклопедии, популярные книги [такие как "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), переведённые на рус. язык]. Важным вкладом в историю физики является опубликование М. рукописей работ Г. Кавендиша по электричеству (1879) с обширными комментариями М.

С о ч.: The scientific papers, v. 1 - 2, Carnb., 1890; Theory of heat, L., 1871; A treatise on electricity and magnetism, v. 1-2, Oxf., 1873; в рус. пер.- Избр. соч. по теории электромагнитного поля, М., 1954; Статьи и речи, М., 1968 (имеется библиография трудов М. и работ о нём).

Лит.: Мак-Дональд Д., фарадей, Максвелл и Кельвин, пер. с англ., М., 1967; Campbell L., Carnett W., The life of J. C. Maxwell, L., 1882. Я. Г. Дорфман.

МАКСВЕЛЛ, единица магнитного потока в СГС системе единиц. Названа в честь англ, физика Дж. К. Максвелла. Сокращённое обозначение: русское мкс, междунар. Мх. М.- магнитный поток, проходящий при однородном магнитном поле с индукцией 1 гаусс через поперечное сечение площадью 1 см2, нормальное к направлению поля: 1 мкс = (1 гс)Х(1 см2). М. может быть также определён на основе явления электромагнитной индукции как магнитный поток, при равномерном изменении к-рого до нуля за время 1 сек в охватывающем его замкнутом контуре индуцируется эдс, равная 1 единице СГС разности потенциалов.


МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ, распределение по скоростям (или импульсам) молекул системы, находящейся в состоянии термодинамич. равновесия. Впервые установлено Дж. К. Максвеллом в 1859. Согласно М. р., вероятность

Здесь т - масса молекулы, Т - абс. темп-pa системы, k - постоянная Больцмана.

Вероятность того, что абс. значение скорости лежит в интервале от v до v + дельта v, вытекает из (1) и имеет вид:

наиоолее вероятной, чем ниже темп-pa системы, тем большее число молекул имеют скорости, близкие к наиболее вероятной (см. рис.).

Ср. число частиц в 1 см3 газа со скоростями в интервале от v до v + дельта v