БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

при М., составляет 2X3 мм, скорость печати на устройстве, выполненном по рассмотренной схеме, обычно составляет 6000 строк/мин, но может быть значительно увеличена. Основное применение М.-печатающие устройства для вывода информации из ЭВМ.

Схема устройства для магнитографии: 1 - магнитный барабан; 2 - магнитный слой барабана; 3 - блок магнитных записывающих головок; 4 - скрытое магнитное изображение; 5 - ферромагнитный порошок; 6 - порошковое изображение; 7 - бумага; 8 - прижимной ролик; 9 - порошковое изображение на бумаге; 10 - обжимные валики; 11 - узел очистки; 12 - магнитная стирающая головка.

Лит.: Арутюнов М. Г., Патрунов В. Г., феррография - магнитная скоростная печать, М.- Л., 1964; Арутюнов М. Г., Маркович В. Д., Скоростной ввод - вывод информации, М., 1970. М. Г. Арутюнов.

МАГНИТОДВИЖУЩАЯ СИЛА, намагничивающая сила, величина, характеризующая магнитное действие электрического тока. Вводится при расчётах магнитных цепей по аналогии с электродвижущей силой в электрич. цепях. М. с. F равна циркуляции вектора напряжённости магнитного поля Н по замкнутому контуру L, охватывающему электрич. токи, к-рые создают это магнитное поле:
[1513-12.jpg]

проекция Н на направление элемента контура интегрирования dl, n - число проводников (витков) с током Ii, охватываемых контуром. Единица М. с. в Международной системе единиц (СИ)- ампер (или ампер-виток), в СГС системе единиц (симметричной) - гилъберт.
[1513-13.jpg]

МАГНИТОДИНАМИКА, магнетодинамика, раздел учения о магнетизме, в к-ром рассматриваются процессы намагничивания в изменяющихся во времени полях. Изучение частотной зависимости магнитных свойств (см., напр., Магнитный резонанс), помимо теоретич. значения, имеет большой практич. интерес в связи с применением ферромагнитных материалов в приборах и устройствах, работающих в переменных полях (см. Ферромагнетизм). Термин "М." в совр. науч. литературе применяется редко.

МАГНИТОДИЭЛЕКТРИКИ, магнитные материалы, представляющие собой связанную в единый конгломерат смесь ферромагнитного порошка и связки-диэлектрика (напр., бакелита, полистирола, резины); в макрообъёмах обладают высоким электрич. сопротивлением, зависящим от количества и типа связки. М. могут быть как магнитно-твёрдыми материалами, так и магнитно-мягкими материалами. Магнитно-мягкие М. вырабатывают в основном из тонких порошков карбонильного железа, молибденового пермаллоя и альсифе-ра с различной связкой. Магнитно-мягкие М. применяют для изготовления сердечников катушек индуктивности, фильтров, дросселей, радиотехнич. броневых сердечников, работающих при частотах 104-108 гц.

Магнитно-твёрдые М. изготовляют на основе порошков из ални сплавов, Fe - Ni - Al - Со сплавов (альнико), ферритов. Коэрцитивная сила этих М. ниже, чем массивных материалов, на неск. десятков %, а остаточная индукция меньше почти в 2 раза. Однако они всё больше применяются в телефонии и приборостроении (постоянные магниты, эластичные герметизаторы для разъёмных соединений и др.).

Лит.: Толмасский И. С., Металлы и сплавы для магнитных сердечников, М., 1971.

МАГНИТОЛА, радиотехнический аппарат бытового назначения, конструктивно объединяющий радиоприёмник и магнитофон. Преимущество такого объединения заключается в использовании общих усилителя электрич. колебаний, выпрямителя переменного тока и громкоговорителей. Отечеств, пром-стью в нач. 70-х гг. 20 в. выпускаются М. "Рекорд-301", "Миния-4" и др.

МАГНИТОМЕТР (от греч. magnetis - магнит и ... метр), прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов). В зависимости от определяемой величины различают приборы для измерения: напряжённости поля (эрстедметры), направления поля (инклинаторы и деклинаторы), градиента поля (градиентометры), магнитной индукции (тесламетры), магнитного потока (веберметры, или флюксметры), коэрцитивной силы (коэрцитиметры), магнитной проницаемости (мю-метры), магнитной восприимчивости (каппа-метры), магнитного момента.

В более узком смысле М.- приборы для измерения напряжённости, направления и градиента магнитного поля. В совр. М. для отсчёта значений измеряемой величины применяются следующие методы: визуальный отсчёт по шкале, запись в цифровой или аналоговой форме, фотозапись, запись на магнитных лентах, перфолентах и перфокартах. Шкалы М. градуируются в единицах напряжённости магнитного поля СГС системы единиц (эрстед, мэ, мкэ, гамма 105 э) и в единицах магнитной индукции СИ (тесла, мктл, нтл).

Различают М. для измерений абс. значений характеристик поля и относительных изменений поля в пространстве или во времени. Последние наз. вариометрами магнитными. М. классифицируют также по условиям эксплуатации (стационарные, на подвижных платформах и т. д.), и, наконец, в соответствии с физ. явлениями, положенными в основу их действия (см. Магнитные измерения).

Магнитостатнческие М. основаны на измерении механич. момента У, действующего на индикаторный магнит прибора в измеряемом поле Низм, J = [М, Низм], где М - магнитный момент индикаторного магнита. Момент J в М. различной конструкции сравнивается: а) с моментом кручения кварцевой нити (действующие по этому принципу кварцевые М. и универсальные магнитные вариометры на кварцевой растяжке обладают чувствительностью G ~ ~ 1 нтл), б) с моментом силы тяжести (магнитные весы с G ~ 10-15 нтл); в) с моментом, действующим на вспомо-гат. эталонный магнит, установленный в определённом положении (оси индикаторного и вспомогательного магнитов в положении равновесия перпендикулярны). В последнем случае, определяя дополнительно период колебания вспомогательного магнита в поле Низм, можно измерить абс. величину Низм (абс. метод Гаусса). Осн. назначение магнитостатич. М.- измерение компонент и абс. величины напряжённости геомагнитного поля (рис. 1), градиента поля, а также магнитных свойств веществ.

Рис. 1, Схема кварцевого магнитометра для измерения вертикальной составляющей (Z) напряжённости геомагнитного поля: 1 - оптическая система зрительной трубы; 2 -оборотная призма для совмещения шкалы 9 с полем зрения; 3 - магниточувствительная система (постоянный магнит на кварцевой растяжке 5); 4 - зеркало; 6 - магнит для частичной компенсации геомагнитного поля (изменения диапазона прибора); 7 - кварцевая рамка; 8 -измерительный магнит. Магниточувствительную систему приводят в горизонтальное положение, воздействуя измерительным магнитом. По углу поворота магнита 8 судят о величине Z-компонен-ты. 10 - оптическая система для освещения шкалы.

Электрические М. основаны на сравнении Низм с полем эталонного соленоида Н = kI, где k - постоянная соленоида, определяемая из геометрич. и конструктивных его параметров, I - измеряемый ток. Электромагнитные М. состоят из компаратора для измерения размеров соленоида и обмотки, теодолита для точной ориентации оси соленоида по направлению измеряемой компоненты поля, потенциометрич. системы для измерения тока I и чувствительного датчика - индикатора равенства полей. Чувствительность М. этого типа ~1 мкэ, осн. область применения - измерение горизонтальной и вертикальной составляющих геомагнитного поля.

Индукционные М. основаны на явлении электромагнитной индукции- возникновении эдс в измерительной катушке при изменении проходящего сквозь её контур магнитного потока Ф. Изменение потока ДФ в катушке может быть связано: а) с изменением величины или направления измеряемого поля во времени (примеры - индукционные вариометры, флюксметры). Простейший флюксметр (веберметр) представляет собой баллистич. гальванометр, действующий в сильно переуспокоенном режиме (G~10-4вб/деление); широко применяются магнитоэлектрич. веберметры с G ~ ~ 10-6 еб/деление, фотоэлектрич. веберметры с G ~10-8вб/деление и др. (подробнее см. Флюксметр); б) с периодич. изменением положения (вращением, колебанием) измерит, катушки в измеряемом поле (рис. 2); простейшие тесламетры с катушкой на валу синхронного двигателя обладают G ~ 10-4 тл. У наиболее чувствительных вибрационных М. G ~ 0,1-1 нтл; в) с изменением магнитного сопротивления измерит, катушки, что достигается периодич. изменением магнитной проницаемости пермаллоевого сердечника (он периодически намагничивается до насыщения вспомогат. переменным полем возбуждения); действующие по этому принципу феррозондовые М. имеют G ~ 0,2-1 нтл (см. Феррозонд). Индукционные М. применяются для измерения земного и космич. магнитных полей, технич. полей, в магнитобиологии и т. д.

Рис. 2. Блок-схема и конструкция преобразователя вибрационного тесламетра: 1 - измерительная катушка, укреплённая на торце пьезокристалла 2 (вибратора); 3 - зажим для крепления пьезокристалла; 4 - усилитель сигнала; сигнал детектируется и измеряется прибором магнитоэлектрической системы 5; 6 - генератор электромагнитных колебаний; 7 - источник питания.

Квантовые М.- приборы, основанные на ядерном магнитном резонансе, электронном парамагнитном резонансе, свободной прецессии магнитных моментов ядер или электронов во внешнем магнитном поле и др. квантовых эффектах. Для наблюдения зависимости частоты w прецессии магнитных моментов микрочастиц от напряжённости Низм измеряемого поля (w = у * Низм, где у - магнитомеханическое отношение) необходимо создать макроскопич. магнитный момент ансамбля микрочастиц (ядер или электронов). В зависимости от способа создания макроскопич. магнитного момента и метода детектирования сигнала различают: протонные М. (свободной прецессии, с динамич. поляризацией и с синхронной поляризацией), резонансные М. (электронные и ядерные), М. с оптич. накачкой и др. (подробнее см. в ст. Квантовый магнитометр). Квантовые М. применяются для измерения напряжённости слабых магнитных полей (в т. ч. геомагнитного и магнитного поля в космич. пространстве), в геологоразведке, в магнето-химии (G до 10-s-10-7нтл). Значит, меньшую чувствительность (G~ 10-5 тл) имеют квантовые М. для измерения сильных магнитных полей.

Сверхпроводящие квантовые М. основаны на квантовых эффектах в сверхпроводниках: выталкивании магнитного поля из сверхпроводника (см. Мейснера эффект), квантовании магнитного потока в сверхпроводнике, на зависимости от Низм критич. тока контакта двух сверхпроводников (см. Джозефсона эффект). Сверхпроводящими М. измеряют компоненты геомагнитного поля, они нашли применение в биофизике, магнетохимии и т. д. Чувствительность сверхпроводящих М. достигает ~10-5нтл (подробнее см. Сверхпроводящие магнитометры).

Гальваномагнитные М. основаны на явлении искривления траектории электрич. зарядов, движущихся в магнитном поле Низм, под действием Лоренца силы (см. Гальваномагнитные явления). К этой группе М. относятся: М. на Холла эффекте (возникновении между гранями проводящей пластинки разности потенциалов, пропорциональной протекающему току и Низм); М. на эффекте Гаусса (изменении сопротивления проводника в поперечном магнитном поле Низм); на явлении падения анодного тока в вакуумных магнетронах и электроннолучевых трубках (вызванного отклонением электронов в магнитном поле) и др. На эффекте Холла основано действие различного рода тесламетров для измерения постоянных, переменных и импульсных магнитных полей (чувствительностью 10-4-10-5тл, рис. 3); градиентометров и приборов для исследования магнитных свойств материалов. Чувствительность тесламетров, работающих на основе эффекта Гаусса, достигает 10 мкв/тл; чувствительность электронно-вакуумных М. ~30 нтл.

Для измерения напряжённости и изучения топологии магнитного поля в различных средах нашли применение М., основанные на вращении плоскости поляризации света в магнитном поле или поле намагниченного образца (см. Фарадея эффект, Керра эффект), на изменении длины намагниченного стержня под действием приложенного поля (см. Магнитострикция) и др. М. различных принципов действия и чувствительности широко применяются в геофизике, физике космоса, ядерной физике, магнетохимии, биофизике, дефектоскопии и в качестве элементов автоматики и средств управления.

Рис. 3. Принципиальная схема тесламет" ра, основанного на эффекте Холла (компенсационного типа): E1 и Е2 - источники постоянного тока; rt и r2 - резисторы; G - гальванометр, тА - миллиамперметр; ПХ