БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ПЕРЕНОСНОЕ ЗНАЧЕНИЕ СЛОВА, вторичное (производное) значение слова.
ОТШЕЛЬНИЧЕСТВО, анахоретcтво, отказ из религ. побуждений от общения с людьми.
ОПЕРАТОРЫ в квантовой теории, математич. понятие.
ЛИМОННИК (Schizandra), род растений сем. схизандровых.
ОБРАТНАЯ КОНДЕНСАЦИЯ, ретроградная конденсация.
НИТРОГЛИКОЛЬ, гликольдинитрат, O2NOCH2- CH2ONO2.
НЕПОТОПЛЯЕМОСТЬ судна, способность судна оставаться на плаву.
НАЧЁТ ДЕНЕЖНЫЙ, по сов. трудовому праву одна из форм возмещения имуществ ущерба.
МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики.
ПИРЕЙ (Peiraieus), город в Греции, на сев.-вост. берегу Саронического зал. Эгейского м..


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

ризующими такие свойства, как пьезоэлектрич. эффект (см. Пьезоэлектричество), электрострикция, магнитострикция, упругость, фотоупругость и т. д.

Диэлектрич., магнитные, упругие и др. свойства кристаллов удобно представлять в виде геометрия, поверхностей. Описывающий такую изобразит. поверхность радиус-вектор определяет величину той или иной кристаллофизич. константы для данного направления. Симметрия любого свойства кристалла не может быть ниже его морфологич. симметрии (принцип Ней мана). Иными словами, группа симметрии, описывающая любое физич. свойство кристалла, неизбежно включает элементы симметрии его точечной группы. Так, кристаллы и текстуры, обладающие центром симметрии, не могут обладать полярными свойствами, т. е. такими, к-рые изменяются при изменении направления на обратное (напр. Пи-роэлектрики). Наличие в среде элементов симметрии определяет ориентацию главных осей изобразительной поверхности и число компонент тензоров, описывающих то или иное физич. свойство. Так, в кристаллах кубич. сингонии все физические свойства, описываемые тензорами 2-го ранга, не зависят от направления. Такие кристаллы изотропны. Изобразительной поверхностью в этом случае является сфера. Те же свойства в кристаллах средних сингонии (тетрагональной, тригональной и гексагональной) имеют симметрию эллипсоида вращения. Тензор 2-го ранга содержит в этом случае две независимые константы. Одна из них описывает исследуемое свойство вдоль главной оси кристалла, а другая- в любом из направлений, перпендикулярных главной оси. Для того чтобы полностью описать исследуемое свойство таких кристаллов в заданном направлении, только эти две величины и необходимо измерить. В кристаллах низших сингонии физич. свойства обладают симметрией трёхосного эллипсоида и характеризуются тремя главными значениями тензора 2-го ранга (и ориентацией главных осей этого тензора) (см. Кристаллооптика).

Физич. свойства, описываемые тензорами более высокого ранга, характеризуются большим числом параметров. Так, упругие свойства, описываемые тензором 4-го ранга для кубич. кристалла, характеризуются тремя, а для изотропного тела двумя независимыми величинами. Для описания упругих свойств триклинного кристалла необходимо определить 21 независимую постоянную. Число независимых компонент тензоров высших рангов (5, 6-го и т. д.) для разных классов симметрии определяется методами теории групп (см. Группа).

К. разрабатывает рациональные методы измерений, необходимых для полного определения физич. свойств анизотропных сред. Эти методы применимы как при исследовании кристаллов, так и анизотропных поликристаллич. агрегатов (текстур). К. занимается также методами измерений разнообразных свойств анизотропных сред с помощью радиотехнич., резонансных, акустич., оптич., диффрак-ционных и иных методов.

Мн. физич. явления характерны только для анизотропных сред и изучаются К. Это - двойное лучепреломление и вращение плоскости поляризации света, прямой и обратный пьезоэффекты, элект-рооптич. эффект, генерация световых гармоник (см. Нелинейная оптика) и т. д. Др. явления (электропроводность, упругость и т. д.) наблюдаются и в изотройных средах, но кристаллы имеют (Особенности, важные для практич. применения.

Значит. место в К. занимают вопросы, тесно примыкающие к физике твёрдого тела и кристаллохимии. Это - исследование изменений тех или иных свойств кристалла при изменении его структуры или сил взаимодействия в кристаллич. решётке (см. Твёрдые растворы, Изоморфизм). К. изучает изменение симметрии кристаллов в различных термоди-намич. условиях. При этом используется Кюри принцип, к-рый позволяет предсказать точечные и пространственные группы кристаллов, испытывающих фазовые переходы в ферромагнитное и сегнетоэлектрич. состояние (см. Ферромагнетизм, Сегнетоэлектрики).

Важное место в К. занимает физика реального кристалла, изучающая различного рода дефекты в кристаллах (центры окраски, вакансии, дислокации, дефекты упаковки, границы кристаллических блоков, доменов, зёрен и т. д.) и их влияние на физич. свойства кристаллов. Такими свойствами, в первую очередь, являются пластичность, прочность, электросопротивление, люминесценция, механич. добротность и т. д. К задачам К. относится также поиск новых кристаллов, обладающих физич. свойствами, необходимыми для практич. применений.

Лит. см. при ст. Кристаллография, Кристаллы, Симметрия кристаллов.

К. С. Александров.



КРИСТАЛЛОФОСФОРЫ (от кристаллы и греч. phos - свет, phoros - несущий), неорганические кристаллические люминофоры. К. люминесцируют под действием света, потока электронов, проникающей радиации,электрич.тока и т. д. Способность К. люминесцировать обусловлена наличием запрещённой зоны в энергетич. спектре кристалла (см. Твёрдое тело), поэтому К. могут быть только полупроводники и диэлектрики. В состав К. входят в малых концентрациях примеси - активаторы. Активаторы и дефекты решётки кристалла (вакансии, междуузельные атомы и т. п.) образуют центры свечения. Механизм свечения К. в основном рекомбинационный(см. Люминесценция). Люминесцировать К. могут как в результате возбуждения непосредственно центров свечения, так и при поглощении энергии возбуждения кристаллич. решёткой К. и передаче её (через электроны и дырки, экситоны и др.) центрам свечения. Непосредств. рекомбинация электронов и дырок в К. также сопровождается свечением (излу-чательная рекомбинация). Длительность послесвечения К. колеблется в широких пределах - от 10-9 сек до неск. часов. В зависимости от активатора спектр люминесценции К. может меняться от ультрафиолетового до инфракрасного.

Основой К. служат сульфиды, селени-ды и теллуриды Zn, Cd, оксиды Са, Мп, щелочно-галоидные и нек-рые др. соединения. В качестве активаторов используют ионы металлов (Си, Со, Mn, Ag, Еu, Тu и т. д.). Синтез К. осуществляется чаще всего прокаливанием твёрдой шихты, однако ряд К. получают из газовой фазы или расплава. Комбинируя активаторы и основы, можно синтезировать К. для преобразования различных видов энергии в видимый свет необходимых цветов с высоким кпд (до десятков %). Созданы, напр., К., преобразующие инфракрасное излучение в видимое, а такжеК., яркость люминесценции к-рых возрастает или уменьшается (вспышечные и тушащиеся К.) под действием инфракрасного излучения. Благодаря таким широким возможностям, а также большой яркости свечения, химич. и радиационной стойкости К. находят значит. применение (особенно К. с шириной запрещённой зоны в неск. эв). Порошкообразные К. используются в люминесцентных лампах, экранах телевизоров и осциллографов, электролюминесцентных панелях и т_ д. К. с малым временем послесвечения (напр., Nal*Tl) применяются в сцинти-ляционных счётчиках для регистрации быстрых элементарных частиц и у-кван-тов. Нек-рые К. могут выступать в качестве активной среды в полупроводниковых лазерах.

Лит.: Фок М. В., Введение в кинетику люминесценции кристаллофосфоров.М., 1964; Физика и химия соединений АII BVI, пер. с англ., М., 1970. Э. А. Свириденков.

КРИСТАЛЛОХИМИЯ, изучает пространственное расположение и химическую связь атомов в кристаллах, а также зависимость физич. и химич. свойств кристаллич. веществ от их строения. Будучи разделом химии, К. тесно связана с кристаллографией. Источником экспериментальных данных о кристаллич. структурах являются гл. обр. рентгенострук-турный анализ, структурная электронография и нейтронография, с помощью к-рых определяют абс. величины межатомных расстояний и углы между линиями химич. связей (валентные углы). К. располагает обширным материалом о кристаллич. структурах нескольких тысяч химич. веществ, включая такие сложные объекты, как белки и вирусы.

Осн. задачи К.: систематика кристаллич. структур и описание наблюдающихся в них типов химич. связи; интерпретация кристаллич. структур (выяснение причин, определяющих строение того или иного кристаллич. вещества) и их предсказание; изучение связи физич. и химич. свойств кристаллов с их структурой и характером химич. связи.

Строение кристаллов обнаруживает исключит. разнообразие; будучи, напр., довольно простым в случае алмаза, оно оказывается весьма причудливым и сложным в случае кристаллич. бора. Как правило, каждому кристаллич. веществу присуща своя структура. Однако достаточно часто (напр., NaCl и КС1, Вr2 и Сl2) разные вещества имеют структуру, одинаковую с точностью до подобия (изоструктурные вещее т-в а). Такие вещества нередко образуют смешанные кристаллы (см. Изоморфизм). С др. стороны, одно и то же химич. вещество, будучи полученным при разных условиях, может иметь разное строение (полиморфизм).

Кристаллич. структуры в К. делят на гомодесмические (координационные) и гетеродесмиче-с к и е. В первых все атомы объединены одинаковыми химич. связями, образующими пространственный каркас. Здесь нет группировок, к-рые можно было бы назвать молекулами. Гомодесмическую структуру имеют, напр., алмаз, галоге-ниды щелочных металлов. Однако гораздо чаще кристаллич. вещества имеют гетеродесмическую структуру; её характерная черта - присутствие структурных фрагментов, внутри к-рых атомы соединены наиболее прочными (обычно ковалент-ными) связями. Эти фрагменты могут

представлять собой конечные группировки атомов, цепи, слои, каркасы. Соответственно выделяются островные, цепочечные, слоистые и каркасные структуры. Островными структурами обладают почти все органич. соединения и такие неорганич. вещества, как галогены, О2, N2, CO2, N2O4 и др. Роль "островов" играют молекулы, поэтому такие кристаллы наз. молекулярными. Часто в качестве "островов" выступают многоатомные ионы (напр., сульфаты, нитраты, карбонаты). Цепочечное строение имеют, напр., кристаллы одной из модификаций Se (атомы связаны в бесконечные спирали) или кристаллы PdCl2, в к-рых присутствуют бесконечные ленты:

Слоистую структуру имеют графит, BN, MoS2 и др., каркасную структуру - СаТi3 (атомы Ti и О, объединённые ковалентными связями, образуют ажурный каркас, в пустотах к-рого расположены атомы Са). Известны гетеродесми-ческие структуры, где имеются структурные фрагменты разного типа. Так, кристаллы комплексного соединения [N(CH3)4] [МnС13] построены из "островов" - ионов [N(CH3)4]+ и цепей

По характеру связи между атомами (в случае гомодесмических структур) или между структурными фрагментами (в случае гетеродесмических структур)

Различают: ковалентные (напр., iC, алмаз), ионные (см. Ионные кристаллы), металлические (металлы и интерметаллические соединения) и молекулярные кристаллы. Кристаллы последней группы, в к-рой структурные фрагменты связаны межмолекулярным взаимодействием, имеют наибольшее число представителей. Сюда, в частности, входят кристаллы инертных газов. Деление кристаллов на указанные группы в значительной мере условно, поскольку существуют постепенные переходы от одной группы к другой. Однако типичные представители разных групп существенно различаются по свойствам, в частности, по величине энергии структуры (работы, необходимой для разъединения одного моля кристаллич. вещества, взятого при атм. давлении и комнатной темп-ре, на отд. атомы, ионы или молекулы).

Значения энергии структурыН для некоторых кристаллов с различными типамихимической связи

Тип кристалла

Вещество

H.

ккал/молъ*
Ковалентный

SiC

283
Ионный

NaCl

180
Металлический

Fe

Na

94 26
Молекулярный



CH4

2,4

1 ккал/моль=4,19 кдж/моль.

Уменьшение Н соответствует уменьшению прочности связи. Резкое различие величины Н для Fe и Na объясняется тем,
что в первом случае существ. вклад даёт ковалентное взаимодействие.

Кристаллохимич. анализ строения вещества имеет два аспекта: стереохимиче-ский и кристаллоструктурный. В рамках первого обсуждаются величины кратчайших межатомных расстояний и значения валентных углов. При этом пользуются понятиями координационного числа (число ближайших соседей данного атома) и координационного многогранника. Для атомов мн. элементов, склонных к кова-лентному характеру связи, типи